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Abstract—Sample entropy (SE) has been employed for fault 

diagnosis of rotary machinery (FDRM). However, SE has low 

computation efficiency for long time series. To solve this problem, 

symbolic sample entropy (SSE), a novel measure of time series 

regularity, is proposed to estimate the complexity. However, SSE 

fails to account for the multiple scale information inherent in 

measured vibration signals. Therefore, we combine the concept of 

multi-scale analysis with SSE, called multi-scale SSE (MSSE). To 

evaluate the effectiveness of the proposed MSSE method, we 

apply several simulated signals to verify the merits of SSE in 

impulsion detection and calculation efficiency. Furthermore, we 

utilize one experimental data to validate its effectiveness in 

recognizing several fault types of rotary machinery. 

Experimental results indicate that MSSE has an advantage in 

extracting fault features compared with  multi-scale entropy 

(MSE), multi-scale fuzzy entropy (MFE), and multi-scale 

permutation entropy (MPE) methods. 

Keywords- Symbolic sample entropy (SSE); Multi-scale 

symbolic sample entropy (MSSE); Rotary machinery; Complexity 
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I.  INTRODUCTION 

Rotating machinery plays a significant role in mechanical 
equipment, including many engineering fields such as power, 
chemical, metallurgy, and machinery manufacturing. It 
generally works under worse working conditions, which is 
prone to failures, resulting into machinery sudden shutdown 
and severe economic loss in industrial application. Therefore, 
the health condition monitoring (HCM) of rotary machinery is 
crucial to ensure the safe operation of industrial 
machinery[1][2][3].  

Until now, there are many mature techniques for HCM of 
rotary machinery. Among these techniques, the vibration-based 
method is most widely applied in industrial applications[4]. 
The vibration signal of healthy machinery will have a different 
entropy value with that of faulty machinery due to the changes 
of the dynamical complexity. Hence, entropy is an effective 
method in detecting various faults of rotary machinery. In 
recent years, various entropies have been developed rapidly to 
measure the complexity of time series generated from 
nonlinear dynamical systems. Pincus proposed a family of 
statistics, called approximate entropy (AE), to measure the 
regularity of a time series[5]. AE has been widely applied to 

vibration signal analysis. However, AE is a biased statistic. AE 
strongly depends on the data length and lacks relative 
consistency in some cases. To remove the deficiencies, a 
modification of AE known as sample entropy (SE) was 
proposed by Richman et al.[6]. SE relieves the bias caused by 
self-matched so that SE displays relative consistency and less 
dependence on data length. However, the results of SE for 
estimating entropy show high sensitivity to the parameter 
selection and may be invalid in case of small parameter. Chen 
et al. proposed fuzzy entropy (FE) as the improvement of SE, 
which uses the fuzzy set theory to count the states of the orbits 
in the time series[7]. FE can get more precise entropy 
estimation, which extracts more fault information from the 
vibration signal of rotary machinery. Permutation entropy (PE) 
measures the complexity of the time series through the 
permutation of the orbits to determine the state probability[8].  

However, traditional entropy methods have their own 
disadvantages. SE and FE are not fast enough for some real-
time applications, especially for long signals. PE, though 
computationally efficient, does not consider the influence of 
the difference between amplitude values for a given time series. 
In this work, we introduce a new related measure of time series 
regularity, symbolic sample entropy (SSE) by incorporating the 
symbolic dynamic filtering (SDF) into SE. The proposed SSE 
contains the symbolization process, and analysis of symbolic 
data is often less sensitive to noise. Further, we combine the 
concept of multi-scale analysis [9] with SSE, namely multi-
scale SSE (MSSE).   

The remainder of this paper is organized as follows. The 
proposed SSE algorithm and MSSE algorithm are introduced in 

SectionⅡ. In Section Ⅲ, several simulations are described to 

demonstrate the effectiveness of the proposed SSE algorithm in 
impulsion detection and calculation efficiency. Section Ⅳ 
provides the experimental variation using one real dataset. A 
conclusion is provided in Section Ⅴ. 

II. METHOD 

In this section, the concepts of the SSE algorithm and 
MSSE algorithm are detailed explained in follows. 
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A. Symbolic Sample Entropy (SSE) 

Let { ( ) 1,2,..., },X nx n N  represent a time series of length 

N. The defined SSE can be obtained following five steps. 

Step 1: Discretize the raw time series { ( ) 1,2,..., },X nx n N  

into a corresponding sequence of  symbols 1 2{    }Ns s s s L . 

Maximum entropy partitioning (MEP) is applied to complete 
the symbolization in this paper. 

Step 2: Construct the embedding vectors based on the 
symbol sequence with dimension m by using Eq.(1): 

            
1 1{     },  1m

i i i i ms s s i N m     s L                (1) 

Step 3: We call ( , ),  m m

i j i js s an m-dimensional matched 

vector pair if the two symbol vectors are equal. Let nm 
represent the total number of m-dimensional matched vector 
pairs.  

Step 4: Repeat steps (1)–(3) for dimension m=m+1, and 
nm+1 is obtained to represent the total number of (m+1) 
dimensional matched vector pairs. 

Step 5: The SSE is defined as the logarithm of the ratio of 

nm+1 to nm, which can be expressed as
1

( , , ) ln
m

m

n
SSE X m

n




  . 

Algorithm 1 Symbolic Sample Entropy 

Input: time series { ( ) 1,2,..., },X nx n N , embedding 

dimension m, and the number of symbols  . 

Output: Symbolic Sample Entropy SSE. 

1 Discretize the raw time series with  symbols. 

2 for m=m,m+1 do 

3 Construct the embedding vectors based on the 

symbol sequence, and there are 
m  potential 

state patterns 

4 Count quantity of every state pattern in the 

embedding vectors ( ) ( ),1m mB k k    

5 the numbers of matched vector pairs 

( ) ( )

1

( ) ( ( ) 1)

m

m m m

k

n B k B k




    

6 end for 

7 
1
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m

m

n
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The pseudo code of the proposed SSE is shown in 
Algorithm 1. For a better understanding of the calculation 
process, Fig.1 gives a clear illustration that how to calculate 
SSE with m=2, and 2  . First, construct the symbolization 

and obtain the symbol sequence {0 1 1 1 1 1, … , 0 0 1 1 1 }. 
Second, the symbol sequence is reconstructed into {0 1}, {1 1}, 
{1 1}, … , {0 1}, {1 1}  for m=2. Third, count quantity of 
every state pattern in the embedding vectors, show in the 

histogram. Then, compute nm=72. Repeat above steps for 
dimension m=3, and obtain nm+1=34. Last, get the SSE value, 

namely
1

ln =0.7503
m

m

n
SSE

n



  . 

B. Multi-scale Symbolic Sample Entropy(MSSE) 

SSE is a single-analysis approach. However, the fault 
features of complex rotary machinery are embedded in multiple 
time-scale domains. Therefore, we proposed the MSSE 
algorithm to calculate SSE over a range of scales to represent 
the complexity of a time series. The multi-scale symbolic 
sample entropy procedure is shown in Algorithm 2. 

Algorithm 2 Multi-scale Symbolic Sample Entropy 

Input: time series { ( ) 1,2,..., },X nx n N , embedding 

dimension m, the number of symbols  , and the 

scale factor . 

Output: Multi-scale Symbolic Sample Entropy MSSE. 

1 for j=1,2,…, do 

2 generate the consecutive coarse-grained time 

series ( ) ( ) ( ) ( )

,1 ,2 ,{     ...  },1j j j j py y y y j        

3 Compute SSE valve of ( )

jy   

4 Augment the data 

1: 1: 1{ ; ( , , , )}j jMSSE MSSE SSE m r N j  

5 end for 
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Fig.1 A clear illustration that how to calculate SSE with m=2, and 2  . 
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III. SIMULATION EVALUATION 

In this section, one impulsive signal is adopted to verify the 
advantage of proposed SSE in impulsion detection and 
calculation efficiency.  

A. Impulsive detection 

To validate the effectiveness of SSE in detecting various 
fault severities, we use the simulated gear faulty signals with 
three crack fault severities, including slight fault, medium fault, 
and severe fault. The synthetic signal has 34816 points, which 
is cut out by a sliding window of 2048 points with a step length 
of 512 points. The time domains of the three simulated bearing 
faulty signals are illustrated shown in Fig.2 (a). For comparison 
purpose, the SE, FE, and PE are also utilized to process the 
impulsive signals. Absolute difference (AD) value between the 
average of the first 5 samples (normal samples) and each of 
other samples is computed to estimate their fault detection 
ability. For each sample, here we calculate the SSE with m=2, 
 =2, SE with m=2, r=0.15, the PE with m=6, and the FE with 

m=2, r=0.15. 

It can be found that the FE and PE method cannot detect the 
impulsive derived from slight fault. By contrast, SE and SSE 
both generate higher AD values when the impulse occurs 
derived from the slight fault. Moreover, proposed SSE has the 
least fluctuation for noise, as shown in Fig.2 (e). The 
phenomenon validates the ability of the proposed SSE in 
impulsive detection.  
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Fig.2  Performance comparison results of SE, FE, PE, and SSE methods: (a) 

the waveform of the simulated signal (b) the AD value of SE, (b) the AD 

value of FE, (d) the AD value of PE, (e) the AD value of SSE. 

B. Calculation efficiency 

To compare the calculation efficiency of SSE, SE, PE, and 
FE, we calculate the time complexity of the four entropy 
methods, shown as in TABLE 1. We can know SSE is O(n), 
PE is O(n), FE is O(n2), SE is O(n2).  

To intuitively compare the calculation efficiency, we also 
count the real time consuming of each entropy method. We 

count the time consuming of each method in Ⅲ.A: SE, 59 

seconds; PE, 49.70 seconds; FE, 252.78 seconds; SSE, 2.25 

seconds. All the codes are implemented at Matlab R2018a 
using Core I7-6700HQ @2.6GHz, 16GB RAM. We can find 
the SE and FE are too time-consuming.  

In summary, from the theoretic and simulation results can 
be seen that SSE is the most time-efficient method.  

TABLE I.  CALCULATION EFFICIENCY 

Method SE PE FE SSE 

Time complexity O(n2) O(n) O(n2) O(n) 

Calculation time(s) 59.00 49.70 252.78 2.25 

IV. EXPERIMENT EVALUATION 

In order to verify the effectiveness of the proposed method 
in actual HCM of rotary machinery, the MSSE is employed to 
extract the fault features from the vibration signals of rotary 
machinery. Then, SVM classifier is applied to classify different 
fault types. The experiments are conducted on rotary 
machinery called SpectraQuest Machinery Fault Simulator 
(MFS). The test rig is shown in Fig.3 (a) and Fig.3 (b), 
respectively. It consists of a reliance electric motor, a three-
way gearbox with straight cut bevel gears, and rolling bearings. 
A magnetic clutch is also mounted at the rear of the gearbox for 
load generation. An accelerometer is installed on the top of the 
gearbox to collect the vibration signals. The sampling 
frequency is set 12800 Hz and the rotating speed is 3000 rpm. 
In this paper, the load is 5 in-lbs of torque. The different faults 
are simulated by replaced the fault gear (including pitting in the 
driving tooth, the broken tooth in the driving tooth and the 
missing tooth in the driving tooth, as shown in Fig.4 (a), (b), 
and (c)) and the fault bearing (including inner race fault and 
outer race fault, shown in Fig.4  (d)  and (e)).  
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Follower gear

Gearbox Accelerometer

LoadMotor

 

Fig.3 (a) The machinery fault simulator system, (b) the layout of the test rig. 
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Fig.4  Faulty gears and bearings: (a) pitting in the driving tooth, (b) broken 

tooth in the driving tooth, (c) missing tooth in the driving tooth, (d) inner race 

fault, (e) outer race fault 
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In this section, seven conditions are introduced, which 
consist of one healthy condition (NOR) and six fault conditions, 
including pitting in the driving tooth with inner race fault (PI), 
pitting in the driving tooth with outer race fault (PO), broken 
tooth in the driving tooth with inner race fault (BI), broken 
tooth in the driving tooth with outer race fault (BO), missing 
tooth in the driving tooth with inner race fault (MI), and 
missing tooth in the driving tooth with outer race fault (MO). 
Each class owns 100 samples and there are total 700 samples 
(100 samples × 7 fault types). Meanwhile, the length of each 
sample is 2048 points. The waveforms under seven healthy 
conditions are shown in Fig.5. In this section, we set m=2,  =3 

and scale=8 in MSSE. 
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Fig.5 The waveforms under seven working conditions: (a)healthy condition 

(NOR), (b) pitting in the driving tooth with inner race fault (PI), (c)pitting in 

the driving tooth with outer race fault (PO), (d)broken tooth in the driving 

tooth with inner race fault (BI), (e)broken tooth in the driving tooth with outer 

race fault (BO), (f)missing tooth in the driving tooth with inner race fault (MI), 

and (g)missing tooth in the driving tooth with outer race fault (MO). 
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Fig.6  Confusion matrix of recognition using proposed MSSE. 

Next, the entropy values of seven health conditions are 

calculated by MSSE method. In this paper, we randomly 

choose 50% samples from each health condition for training 

and residual samples are used to test the classification 

performance. The classification accuracy is defined as follow: 

1

2

Classification(%) 100
N

N
                      (2) 

where N1 represents the correct classified samples and N2 

denotes the total number of samples.  

The obtained features are fed into SVM for classification 
and the obtained results are shown in Fig.6. As can be seen, 
four working conditions are misclassified. The proposed MSSE 
method misclassifies 2% testing samples of PO misclassifies as 
the NOR and 2% testing samples of MO misclassifies as the BI. 
In addition, 6% testing samples of PI are misclassified as BI 
and BO. Last, 8% testing samples of BO are misclassified as PI 
and MO. 

For comparison, the MSE, MFE, and MPE are also tested. 
We set m=2, r=0.15 in MSE, m=6 in MPE, m=2, r=0.15 in 
MFE and scale=8 for three methods. To avoid randomness, 
each method runs 20 times and the obtained results are shown 
in TABLE II.  

TABLE II.  CLASSIFICATION ACCURACY OF THE EXPERIMENTAL DATA SETS 

Method 
Accuracy (%) 

Max Min Mean 

MSSE 97.14 94.85 96.17 

MSE 77.71 68.28 72.34 

MFE 95.42 86.85 90.95 

MPE 93.14 87.71 90.97 

As seen from 0the average testing accuracy of MSSE, MSE, 
MFE, and MPE is 96.17%, 72.34%, 90.95%, and 90.97%. We 
can also see that the proposed MSSE has the highest average 
testing accuracy. This result enforces the conclusion that the 
proposed MSSE has the best ability to distinguish the health 
condition of the bearing and gear. 

CONCLUSION 

In this paper, a new nonlinear dynamic approach called 
MSSE is proposed to measure the complexity and detect the 
dynamical changes of time series. Unlike other entropy 
approaches, MSSE utilizes the SDF to remove the background 
noises and enhance the computation efficiency. To conclude, 
there are two main merits in the proposed MSSE. First, 
robustness. The proposed method is more robust to the noise. 
Second, high calculation efficiency. The advantages of the 
proposed MSSE are validated using both the simulated and 
experiment signals. Results demonstrate that the proposed 
method can successfully identify different health conditions of 
the rotating machinery. MSSE can be taken as a promising tool 
to quantify the complexity of the field data. In further work, we 
will focus on the parameter selection strategy of MSSE. 

ACKNOWLEDGMENT 

The research is supported by National Natural Science 
Foundation of China under Grant 51805434; in part by the 
China Postdoctoral Innovative Talent Plan, China under Grant 
BX20180257; in part by the Postdoctoral Science Funds, China 
under Grant 2018M641021; and in part by the Key Research 
Program, Shaanxi Province under Grant 2019KW- 017. 

REFERENCES 

[1] O. Abdeljaber, O. Avci, S. Kiranyaz, M. Gabbouj, and D. J. Inman, 

“Real-time vibration-based structural damage detection using one-

dimensional convolutional neural networks,” J. Sound Vib., vol. 388, pp. 

154–170, Feb. 2017, doi: 10.1016/j.jsv.2016.10.043. 

2020 Asia-Pacific International Symposium on Advanced Reliability and Maintenance Modeling (APARM)

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on June 27,2023 at 00:25:34 UTC from IEEE Xplore.  Restrictions apply. 



The 9th Asia-Pacific International Symposium on Advanced Reliability and  

Maintenance Modeling  (APARM 2020 – Vancouver) 

[2] Y. Li, X. Wang, Z. Liu, X. Liang, and S. Si, “The Entropy Algorithm 

and Its Variants in the Fault Diagnosis of Rotating Machinery: A 

Review,” IEEE Access, vol. 6, pp. 66723–66741, 2018, doi: 

10.1109/ACCESS.2018.2873782. 

[3] A. Humeau-Heurtier, “The Multiscale Entropy Algorithm and Its 

Variants: A Review,” Entropy, vol. 17, no. 5, pp. 3110–3123, May 2015, 

doi: 10.3390/e17053110. 

[4] P. D. Samuel and D. J. Pines, “A review of vibration-based techniques 

for helicopter transmission diagnostics,” J. Sound Vib., vol. 282, no. 1–2, 

pp. 475–508, Apr. 2005, doi: 10.1016/j.jsv.2004.02.058. 

[5] S. M. Pincus, “Approximate entropy as a measure of system 

complexity.,” Proc. Natl. Acad. Sci., vol. 88, no. 6, pp. 2297–2301, Mar. 

1991, doi: 10.1073/pnas.88.6.2297. 

[6] J. S. Richman and J. R. Moorman, “Physiological time-series analysis 

using approximate entropy and sample entropy,” Am. J. Physiol.-Heart 

Circ. Physiol., vol. 278, no. 6, pp. H2039–H2049, Jun. 2000, doi: 

10.1152/ajpheart.2000.278.6.H2039. 

[7] Weiting Chen, Zhizhong Wang, Hongbo Xie, and Wangxin Yu, 

“Characterization of Surface EMG Signal Based on Fuzzy Entropy,” 

IEEE Trans. Neural Syst. Rehabil. Eng., vol. 15, no. 2, pp. 266–272, Jun. 

2007, doi: 10.1109/TNSRE.2007.897025. 

[8] R. Yan, Y. Liu, and R. X. Gao, “Permutation entropy: A nonlinear 

statistical measure for status characterization of rotary machines,” Mech. 

Syst. Signal Process., vol. 29, pp. 474–484, May 2012, doi: 

10.1016/j.ymssp.2011.11.022. 

[9] M. Costa, A. L. Goldberger, and C. K. Peng, “Multiscale entropy 

analysis of complex physiologic time series,” Phys. Rev. Lett., vol. 89, 

no. 6, p. 068102, Aug. 2002, doi: 10.1103/PhysRevLett.89.068102. 

 

 

2020 Asia-Pacific International Symposium on Advanced Reliability and Maintenance Modeling (APARM)

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on June 27,2023 at 00:25:34 UTC from IEEE Xplore.  Restrictions apply. 


