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A B S T R A C T

Entropy-based methods have shown promise in detecting dynamic changes in non-linear signals
and have been widely applied in fault diagnosis for rotating machinery. However, these methods
have limitations when it comes to capturing frequency-domain information of fault features, as
they are primarily based on time-domain signals. To address this issue, this paper proposes a
new entropy measure called cumulative spectrum distribution entropy (CSDEn), which is based
on the cumulative distribution of the spectrum and considers both frequency probability and
frequency values in the spectrum domain. The proposed method is evaluated using synthetic
signals and experimental data from different bearing and gear working states. The results show
that CSDEn outperforms other widely used entropy measures in detecting dynamic changes
and measuring signal complexity with low noise sensitivity and high computing efficiency.
Nonparametric Mann–Whitney 𝑈 tests reveal significant differences between different working
states for proposed CSDEn method, and compared with other entropy methods, CSDEn achieves
the highest recognition rates in diagnosing different bearing and gear working states. Moreover,
proposed CSDEn method demonstrates its effectiveness in addressing the challenges of small
sample datasets and strong noise interference, making it highly competitive in real industrial
applications.

. Introduction

Rotating machinery is widely used in a range of modern industries, such as transportation, power equipment, aerospace, vehicles,
tc. [1,2]. Due to the harsh working environments, rotating machinery is prone to failure, which will lead to high maintenance
osts and even serious accidents. Therefore, it is of great significance for condition monitoring and fault diagnosis of rotating
achinery [3].

Recently, entropy measure has drawn substantial attention in non-linear signal analysis and fault diagnosis due to its powerful
eature representation capabilities [4–7]. This has resulted in significant development in this subject, making the entropy measure

valuable tool in researching nonlinear dynamical systems and fault feature extraction through time series [8]. As a nonlinear
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Nomenclature

ApEn Approximate entropy
CRDE Cumulative residual distribution entropy
CRE Cumulative residual entropy
CSDEn Cumulative spectrum distribution entropy
DispEn Dispersion entropy
DistEn Distribution entropy
DivEn Diversity entropy
FuzzyEn Fuzzy entropy
PerEn Permutation entropy
SampEn Sample entropy
SD Standard deviation
SNR Signal-to-noise ratio
SpEn Spectral entropy
WGN White Gaussian noise

measure, entropy can quantify the regularity or orderliness of time series. When a fault or damage occurs in rotating machinery,
the amplitude and frequency modulation phenomena will happen, resulting in a complexity change. This indicates that the entropy-
based methods can be utilized to detect the dynamic changes of rotating machinery and further to identify different health
conditions [9,10].

Since its introduction by Shannon in 1948 [11], researchers have been utilizing entropy-based metrics to analyze real-time series.
ntropy can characterize the original signal’s complexity or uncertainty, with higher entropy values indicating a more complex
ime series [12]. In recent years, there has been significant progress in the development of entropy-based methods for analyzing
ime series, including approximate entropy (ApEn) [13], sample entropy (SampEn) [14], permutation entropy (PerEn) [15], fuzzy
ntropy (FuzzyEn) [16], distribution entropy (DistEn) [17], dispersion entropy (DispEn) [18], diversity entropy (DivEn) [19] and
o on [20–22]. To enhance the capability of entropy-based methods for fault diagnosis in low-SNR environments, symbolic dynamic
iltering has been integrated with entropy methods [23–25]. Furthermore, Costa et al. [26] developed a multiscale analysis based
n coarse-graining analysis, which led to the development of multiscale-based methods [27–29]. These multiscale-based entropy
ethods have been widely applied in mechanical system fault diagnosis by extracting information from complex and non-linear

ime series [30].
All of entropy techniques listed above are based on time domain signals. However, these methods have limitations in capturing

hanges in the frequency domain, particularly when it comes to detecting fault-related information. Therefore, in addition to the time
omain, in the frequency domain, spectral entropy (SpEn) [31] can be calculated, which treats the normalized power distribution
n the frequency domain as a probability distribution and calculates its Shannon entropy. SpEn can be interpreted as measuring the
omplexity or uncertainty in the frequency domain from energy perspective. A high value of SpEn means a flat, uniform spectrum,
hich implies the signal is complex, with a wide range of spectral content. On the contrary, a low SpEn value means that almost

he power of spectrum is concentrated in a very small number of frequency components, indicating that the signal is less complex
nd more predictable [32].

Spectral entropy, as a measure of signal complexity in the frequency domain, has found widespread use in signal processing and
eature extraction in fault diagnosis [33,34], speech recognition [35], biomedical signal processing [36], complex network [37],
haos analysis [38] and so on [39–42]. In addition, Mao et al. introduced SpEn into a complexity-entropy curve and validated that
t can characterize time series efficiently [43]. Zhang et al. introduced a novel approach for tracking changes in financial time series
y developing a complexity-entropy causality plane based on multiscale power spectrum entropy [44].

While SpEn and its multiscale version have found numerous applications in health monitoring and fault diagnosis [30,45], certain
hortcomings still exist. Due to the algorithm’s simplicity, SpEn loses some critical information about the time series. On the one
and, the signals can be distorted by interference or noise in actual acquisition data. The original SpEn calculates the frequency
istribution directly, which counts the probability density of each spectral component so that changes in individual frequencies
ead to changes in the entropy value, which is then sensitive to noises. On the other hand, the original SpEn only considers the
requency distribution in the reconstructed spectrum space, disregarding the values of frequencies. Specifically, assume that there
re two spectrum distributions 𝐷1 = {1, 2, 3, 4} and 𝐷2 = {4, 3, 2, 1}, where the information behind two spectrum distributions is

different, the spectrum probability for them is 𝑃1 = {0.1, 0.2, 0.3, 0.4} and 𝑃2 = {0.4, 0.3, 0.2, 0.1}. The same entropy value, which is
𝑛 = −(0.1 log2 0.1 + 0.2 log2 0.2 + 0.3 log2 0.3 + 0.4 log2 0.4)∕ log2 4 = 0.9232, can be obtained. In other words, the classical spectral
istribution probability fails to differentiate between two different spectral distributions or spectral shapes that represent distinct
ynamic systems, resulting in the same entropy value.

Therefore, this paper presents a novel approach for estimating entropy in the spectral domain, which addresses the limitations
f existing methods by considering both the probability and values of frequencies in the spectrum. Drawing inspiration from the
2

oncepts of distribution entropy and cumulative residual entropy [46], two established information measurement techniques, we
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apply the concept of bin distribution to the probability statistics of spectrum to ensure better stability and robustness, and then
introduce the idea of cumulative distribution function, instead of density function, to frequency-domain, to acquire more information
contained in the frequency distribution of the time series.

The proposed CSDEn method leverages the inherent information present in the frequency domain by means of bin distribution
nd cumulative distribution function. On the one hand, the concept of bin distribution is introduced to the spectrum domain to detect
he distribution of temporal and spatial structures in series. On the other hand, the cumulative distribution function is applied to
he complexity measure of spectral distribution, which allows a very fine distinction between the chaotic complexity of the time
eries.

The results obtained from synthetic signals demonstrate the effectiveness of the proposed CSDEn method in characterizing time
eries generated from both stochastic systems (white noise and 1∕𝑓 noise), and deterministic systems (chaotic and periodic series).
oreover, the CSDEn method exhibits low sensitivity to noise and high computational efficiency, making it a promising tool for

nalyzing and processing various types of signals. The proposed CSDEn method was also applied to the analysis of real-world
echanical signals, showing its potential in fault diagnosis. The experimental results demonstrated the superiority of the CSDEn
ethod in detecting dynamic changes of time series and its excellent performance in diagnosing fault states for bearing and gearbox.
he method effectively distinguished the fault signals from normal signals, and the results showed that the CSDEn method can be
sed as a powerful tool for fault diagnosis in mechanical systems. Overall, the proposed method provides a new perspective for
nalyzing signals in the frequency domain and has excellent potential for a wide range of applications.

The main contributions of this work can be summarized as follows: (1) To capture the characteristics from spectral domain in the
ime series, the concept of bin distribution is introduced to the probability statistics of spectrum to measure the complexity of the
requency distribution. (2) The cumulative distribution function instead of density function is introduced to acquire more information
n the frequency distribution of the time series from a frequency domain perspective. (3) The effectiveness of the proposed CSDEn
ethod is systematically validated through comparative studies using both synthetic and real-world signals. Statistical analysis and
achine learning techniques are used to compare the performance of CSDEn with other entropy methods in terms of dynamic change
etection, robustness to noise, stability to signal length, and computational efficiency.

The remainder of this paper is organized as follows. Section 2 defines original spectral entropy, cumulative residual entropy and
roposes cumulative spectrum distribution entropy. In Section 3, the effectiveness of the proposed CSDEn method is demonstrated
hrough synthetic signals. The real-world mechanical signals are applied to verify the performance of fault diagnosis applications
n Section 4. Lastly, in Section 5, the conclusions of this work are summarized.

. Theory

.1. Spectral entropy

In signal processing, SpEn has been introduced to measure the distribution features of a signal spectrum [32,33]. For a given
ime series {𝑥(𝑛)} with length 𝑁 , 𝑛 = 0, 1,… , 𝑁 − 1, the defined SpEn can be accomplished by the following steps:

tep 1 Obtain the spectrum 𝑋(𝑘), 𝑘 = 0, 1,… , 𝑁 − 1 of signal {𝑥(𝑛)} using the discrete Fourier transform, as follows:

𝑋(𝑘) = DFT[𝑥(𝑛)] =
𝑁−1
∑

𝑛=0
𝑥(𝑛)𝑒−𝑗

2𝜋
𝑁 𝑛𝑘 (1)

where 𝑘 represents the 𝑘th frequency component, 𝑘 = 0, 1,… , 𝑁 − 1.

Step 2 The power spectral density distribution function of signal 𝑥(𝑛) is obtained as

𝑝(𝑘) =
|𝑋(𝑘)|2

∑

𝑁
2 −1
𝑘=0 |𝑋(𝑘)|2

(2)

where 𝑘 = 0, 1,… , 𝑁∕2 − 1. It can be observed that ∑

𝑁
2 −1
𝑘=0 𝑝(𝑘) = 1, which meets the definition of Shannon entropy. It is

noticed that when employing discrete Fourier transform, the summation runs from 𝑘 = 0 to 𝑘 = 𝑁∕2 − 1 [42,47].

Step 3 The classical spectral entropy, SpEn, is estimated by computing the Shannon entropy from the obtained spectral density
distribution, i.e.,

𝑆𝑝𝐸𝑛 = −

𝑁
2 −1
∑

𝑘=0
𝑝(𝑘) log2 𝑝(𝑘) (3)

SpEn may vary with the length of the spectral sequence. For comparison purposes, it is usually normalized by the length to
obtain the normalized spectral entropy 𝑆𝑝𝐸𝑛𝑛 as follows:

𝑆𝑝𝐸𝑛𝑛 = −
∑

𝑁
2 −1
𝑘=0 𝑝(𝑘) log2 𝑝(𝑘)

log
(

𝑁
) (4)
3

2 2
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2.2. Cumulative residual entropy

Cumulative residual entropy (CRE), as a generalization of traditional Shannon entropy, uses the cumulative distribution of
andom variables, which allows for a more comprehensive measurement of the complexity of a system or signal and has been
hown to be more robust and applicable in a variety of contexts [46,48,49]. The definitions of CRE for continuous and discrete
ersions are given as follows:

Mathematically, for a random vector 𝑋 ∈ 𝑁 , the continuous CRE for 𝑋 can be expressed as [46]:

𝐶𝑅𝐸(𝑋) = −∫𝑁
+

𝑃 (|𝑋| > 𝜆) log𝑃 (|𝑋| > 𝜆) d𝜆 (5)

where 𝑋 = {𝑋1, 𝑋2 …𝑋𝑁}, 𝜆 = {𝜆1, 𝜆2 … , 𝜆𝑁}, and |𝑋| > 𝜆 represents |

|

𝑋𝑖
|

|

> 𝜆𝑖 and 𝑁
+ = {𝑥𝑖 ∈ 𝑁 ; 𝑥𝑖 ≥ 0}.

Then, the CRE for discrete situation is given as follow [46]:
Let 𝑋1, 𝑋2 …𝑋𝑁 be positive and independent and identically distributed (i.i.d.) with distribution 𝐹 . Let 𝑝𝑁 be the empirical

distribution of 𝑋1, 𝑋2 …𝑋𝑁 and 𝐹𝑁 (𝑋) = 1
𝑁

∑𝑁
𝑖=1 𝑝𝑖 is the cumulative density function, and 𝐺𝑁 (𝑋) = 1 − 𝐹𝑁 (𝑋), the CRE of the

mpirical distribution 𝐹 is defined as:

𝐶𝑅𝐸(𝑋) = −∫

∞

0
𝐺𝑁 (X)log𝐺𝑁 (X)d𝑥 (6)

.3. Cumulative spectrum distribution entropy

Even though SpEn has made great applications in signal processing and analysis, a severe drawback still exists, resulting in poor
tability and loss of information. Therefore, the introduction of the cumulative distribution function and bin distribution to SpEn
llows for a more refined characterization of the chaotic complexity of time series.

For a given time series {𝑥(𝑛)} with length 𝑁 , 𝑛 = 0, 1,… , 𝑁 − 1, the defined cumulative spectrum distribution entropy can be
ccomplished by the following steps:

tep 1 The discrete Fourier transform 𝑋(𝑘) of signal 𝑥(𝑛) can be obtained according to Eq. (1).

tep 2 The normalized power 𝑝(𝑘), 𝑘 = 0, 1,… , 𝑁∕2 − 1, of each frequency component is calculated according to Eq. (2).

tep 3 The spectral components of 𝑁∕2 points are divided into 𝑀 bins, and then the probability 𝑝𝑑𝑓𝑚 is calculated, which is the
power probability of each bin. Mathematically, it can be expressed as:

𝑝𝑑𝑓𝑚 =
∑

𝑘∈𝐵𝑖𝑛𝑚

|𝑝(𝑘)| (7)

where 𝑚 = 1, 2,… ,𝑀 , 𝑘 represents the 𝑘th frequency component, and 𝐵𝑖𝑛𝑚 represents the set of frequency components
contained in the 𝑚th bin.

tep 4 Based on the probability density function, cumulative distribution function for the spectrum bin, denoted as 𝐹𝑑 , can be
obtained.

𝐹𝑑 (𝑚) =
𝑚
∑

𝑗=1
𝑝𝑑𝑓𝑗 (8)

tep 5 The utilization of the normalized cumulative residual function (NCRF) enables effective retention of distribution information
and amplification of differences between frequency bins. Mathematically, it can be expressed as:

𝑛𝑐𝑟𝑓𝑚 =
1 − 𝐹𝑑 (𝑚)

∑𝑀
𝑚=1(1 − 𝐹𝑑 (𝑚))

(9)

Step 6 The proposed CSDEn method applies the cumulative residual probability distribution 𝑛𝑐𝑟𝑓𝑚 to the Shannon entropy
theoretical framework. Mathematically, it can be expressed as:

𝐶𝑆𝐷𝐸𝑛(𝑥,𝑀) = − 1
log2 𝑀

𝑀
∑

𝑚=1
𝑛𝑐𝑟𝑓𝑚 log2

(

𝑛𝑐𝑟𝑓𝑚
)

(10)

It can be observed that ∑𝑀
𝑚=1 𝑛𝑐𝑟𝑓𝑚 = 1, which also meets the definition of Shannon entropy. Thus, the resulting entropy

value should fall within the range [0, 1]. Meanwhile, it is a common practice to display and analyze only the positive half of
4

the spectrum (i.e., the first N/2 points) because it contains all the necessary information for our entropy calculations [42,47].
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Algorithm 1 Cumulative spectrum distribution entropy (CSDEn)
Input: Time series {𝑥(𝑛)} with length 𝑁 , number of bin 𝑀
utput: The value of 𝐶𝑆𝐷𝐸𝑛(𝑥,𝑀)
1: Obtain the spectrum 𝑋(𝑘) of time series using discrete Fourier transform according to Eq.(1).
2: Calculate the normalized power of each frequency component 𝑝(𝑘), 𝑘 = 0, 1,… , 𝑁∕2 − 1.
3: Apply the histogram approach to obtain the power probability 𝑝𝑑𝑓𝑚, 𝑚 = 1, 2,… ,𝑀 , of each spectral bin with 𝑀 bins.
4: Based on the probability 𝑝𝑑𝑓𝑚, calculate cumulative density function 𝐹𝑑 (𝑚) for the spectral bin.
5: Calculate the normalized cumulative residual function 𝑛𝑐𝑟𝑓𝑘 according to Eq.(9).
6: Compute 𝐶𝑆𝐷𝐸𝑛(𝑥,𝑀) according to Eq.(10).

Table 1
Parameter setting of entropy-based methods.
Method Embedding dimension 𝑚 Tolerance threshold 𝑟 Bin number 𝑀 Class number 𝑐

CSDEn – – 64 –
SpEn – – – –
DistEn 2 – 128 –
DispEn 2 – – 5
FuzzyEn 2 0.15 – –
PerEn 4 – – –

The pseudocode of CSDEn is illustrated in Algorithm 1. CSDEn provides a measure of the complexity or uncertainty of a dynamic
system based on the spectral content of a signal. As described in Introduction, the two spectrum distributions 𝐷1 = {1, 2, 3, 4} and
𝐷2 = {4, 3, 2, 1} have different spectrum probability for them, which is 𝑃1 = {0.1, 0.2, 0.3, 0.4} and 𝑃2 = {0.4, 0.3, 0.2, 0.1}, respectively.

ere, they have the same entropy value 𝐸𝑛 = 0.9232, while the spectrum and information behind two spectrum distributions
re different. In other words, the two spectral distributions or spectral shapes that represent different dynamic systems cannot
e distinguished by the classical spectral distribution probability, which yields the same entropy value. On the contrary, through
ormalized cumulative residual function, the updated cumulative distribution 𝑛𝑐𝑟𝑓 1 = {0.45, 0.35, 0.2, 0} and 𝑛𝑐𝑟𝑓 2 = {0.6, 0.3, 0.1, 0}

can be computed. Finally, we can obtain different entropy values: 𝐶𝑆𝐷𝐸𝑛1 = 0.7564 and 𝐶𝑆𝐷𝐸𝑛2 = 0.6477. Therefore, the
introduction of the cumulative residual function to frequency-domain allows for a more refined characterization of the chaotic
complexity of time series.

3. Performance verification using synthetic signals

In this section, we conducted a comprehensive performance evaluation of the proposed CSDEn method using synthetic signals.
The evaluation included various aspects, including accuracy in estimating system dynamics, robustness to different data lengths and
noise levels, and reliability. Here, we compared CSDEn with original SpEn and four widely used entropy methods: PerEn, DispEn,
DistEn, and FuzzyEn.

Among them, SpEn does not require any parameters to be chosen, while PerEn involves embedding dimension 𝑚, DispEn involves
mbedding dimension 𝑚 and class number 𝑐, DistEn involves embedding dimension 𝑚 and bin number 𝑀 , and FuzzyEn involves
mbedding dimension 𝑚 and boundary width 𝑟. In this paper, we set the parameters of PerEn (𝑚 = 4), DispEn (𝑚 = 2, 𝑐 = 5), DistEn
𝑚 = 2,𝑀 = 128), FuzzyEn (𝑚 = 2, 𝑟 = 0.15 ∗ 𝑆𝐷) as suggested in [48,50,51]. As for CSDEn, the parameter bin number 𝑀 is
uggested to be set a value as the integer power of 2, and in this paper, it is set as 64. In summary, the parameter setting of the six
ntropy-based methods is shown in Table 1. All computations were performed on a computer equipped with Intel Core i5-9400F
nd 16 GB RAM, utilizing MATLAB R2018b software.

.1. Sensitivity to signal length

In this subsection, six entropy methods were compared regarding their sensitivity to signal length. The evaluation was conducted
sing two types of noise signals, white Gaussian noise (WGN) and 1∕𝑓 noise, with different sample points 𝑁 . Signal lengths ranged
rom 200 to 4000 with a step of 200, and 100 independent signals were created for every length 𝑁 . The mean and standard deviation
SD) of the results obtained from the six entropy methods were plotted against signal length, as illustrated in Fig. 1.

Overall, the results indicate that the entropy values become more robust with increasing signal length 𝑁 , as evidenced by the
ecreasing SDs of the results. Moreover, as the signal length 𝑁 increases, the mean entropy values tend to stabilize.

On the one aspect, as can be seen from Fig. 1, SpEn, DistEn, DispEn and FuzzyEn exhibit unstable behavior in small data lengths
or both WGN and 1∕𝑓 noise signals, as indicated by large error bars. This phenomenon indicates that SpEn, DistEn, DispEn, and
uzzyEn are highly dependent on the data length, which limits their use in analyzing short time series. In contrast, PerEn and CSDEn
xhibit smaller error bars with less effect on data length, demonstrating greater stability. On the other aspect, it can be observed that
5
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Fig. 1. Sensitivity analysis results of 100 independent signals for two types of noise signals with different sample points 𝑁 using (a) CSDEn, (b) SpEn, (c)
DistEn, (d) DispEn, (e) FuzzyEn, and (f) PerEn.

for data length 𝑁 < 1000, the mean SpEn, DistEn, DispEn, and FuzzyEn values show a clear decreasing trend with poor consistency.
Similarly, PerEn also displays an increasing trend. By contrast, CSDEn is much more stable, approximating a constant line, as shown
in Fig. 1(a), and CSDEn values stabilize when the data length is larger than 400.

In addition, the coefficient of variation (CV) [49], which is the ratio of the standard deviation to the mean value, was also
calculated to compare the dispersion of entropy values. This enables us to compare the degree of variation of one data series to
another, even if the mean values are drastically different. The results are illustrated in Fig. 2. From Fig. 2(a), it can be observed
that CSDEn obtains the smallest CV values, indicating that it can provide stable and consistent estimations for short signal analysis.
Similarly, in Fig. 2(b), CSDEn obtains small CV values, stabilizing when the length is greater than 1000. These results suggest that
as the data length increases, CSDEn, PerEn, and DispEn reach a more stable state of results earlier, whereas DistEn and SpEn have
the largest CV values.

In summary, the results reveal that the proposed CSDEn approach has excellent stability with small SD and CV values among
the six entropy methods, making it robust and consistent for short-time series analysis. PerEn and DispEn also show relatively small
CV values, but CSDEn performs better regarding stability across different data lengths. This phenomenon suggests that CSDEn is a
reliable method for analyzing short-time series data.

3.2. Dynamic change detection capability

In this subsection, the MIX process, an autoregressive model, and a chirp signal, which have been used in previous entropy
studies [20], were employed to compare the dynamic change detection capability of time series.

The MIX(𝑝) process, as a widely used dynamical system, is a combination of a sinusoidal signal of length 𝑁 and independent
identically distributed random noise. Specifically, 𝑁 × 𝑝 randomly chosen points in the sinusoidal signal are replaced with random
noise, resulting in a mixed signal. Mathematically, the MIX process can be expressed as:

𝑀𝐼𝑋(𝑝) =
(

1 −𝑍
)

×𝑋 +𝑍 × 𝑌 (11)
6
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Fig. 2. The coefficient of variation (CV) values for verification results of sensitivity to signal length for (a) 1∕𝑓 noise and (b) WGN signals.

where 𝑋𝑖 =
√

2 sin(2𝜋𝑖∕12) is a sinusoidal signal, 𝑌𝑖 is a value uniformly distributed from [−
√

3,
√

3], and 𝑍𝑖 is a random value
taking 1 with probability 𝑝 and 0 with probability (1 − 𝑝). The MIX process refers to a combination of sinusoidal periodic signals
and noisy signals. The process can be applied to control the complexity of the signal by adjusting the value of 𝑝. When 𝑝 is small,
the process is more periodic and regular, while a larger value of 𝑝 leads to more stochastic and irregular behavior. The MIX process
serves as a simulated scenario where the performance of entropy-based methods can be evaluated in the presence of both periodic
signals and noise. Here, 𝑝 was set to increase linearly from 0.01 to 0.5, which investigates the characterization capability when the
periodic deterministic signal progressively turns into the stochastic signal.

The second simulated model is the first-order auto-regressive (AR(1)) model. In this study, a series of AR(1) processes with
different control parameters were used to investigate the relationship between entropy and the spectral content of colored noise [49].
Mathematically, the AR(1) model can be expressed as:

𝑋𝐴𝑅,𝑖 = 𝜑 ×𝑋𝐴𝑅,𝑖−1 + 𝜀𝑖 (12)

here 𝜑 is the parameter of the model, and 𝜀𝑡 is white noise. In this paper, 𝑋1 = 0.3 and 𝜑 was set as a linearly varying parameter,
ncreasing from 0 to 1.

Next, a chirp signal 𝑋𝑐ℎ𝑖𝑟𝑝 was designed to study the signal frequency change detection capability, which can be expressed as:

𝑋𝑐ℎ𝑖𝑟𝑝 = sin(2𝜋 × (0.25𝑡 + 0.5) × 𝑡) (13)

It is noticed that the three synthetic models have a length of 20 480 points, and a sliding window of 2048 points with 75%
verlap was moved along both signals so that there are total 37 samples for each synthetic model. Meanwhile, since the upper limit
f FuzzyEn is not 1, FuzzyEn is normalized in this section for a better comparative analysis. The corresponding synthetic signals and
nalysis results of different entropy methods are shown in Fig. 3. The synthetic signals for three models are depicted in the upper
ow of Fig. 3. The corresponding entropy values for three models are shown in the lower row of Fig. 3.

Fig. 3(d) illustrates that all entropy methods are capable of detecting dynamic changes, with entropy increasing as the control
arameter 𝑝 varies for the MIX(𝑝) process. This observation suggests a commonality in the entropy change patterns across all six
ethods as the MIX process undergoes a transition from periodicity to randomness. Among these methods, SpEn exhibits the least

tability, characterized by pronounced fluctuations, and FuzzyEn displays a decline in some samples.
Similarly, alterations in the parameter 𝜑 induce modifications in the fundamental characteristics of the AR(1) process, encompass-

ng transformations in its spectral attributes and autocorrelation structure. This phenomenon becomes apparent when examining
ig. 3(b), wherein parameter variations manifest as substantial fluctuations in signal amplitude. Importantly, Fig. 3(e) provides
mpirical evidence that all entropy methodologies, with the exception of DistEn, exhibit an aptitude for detecting and characterizing
his phenomenon. It is noteworthy that, in contrast to the other entropy techniques, DistEn displays marked fluctuations without a
iscernible, consistent downward trend.

Moreover, Fig. 3(f) serves as an illustrative depiction of the signal’s frequency modulation detection capabilities across six distinct
ntropy methodologies. Notably, SpEn and DistEn exhibit a limited capacity to capture variations associated with signal frequency in
he chirp signal. This limitation stems from SpEn’s exclusive consideration of the frequency distribution within the spectral domain,
hereby disregarding specific frequency values. In contrast, when examining DispEn, there is an overall ascending trend, albeit with
light fluctuations. In the case of CSDEn, FuzzyEn, and PerEn, these entropy methods display a remarkable sensitivity to frequency-
7

elated variations within the chirp signal, outperforming SpEn, DistEn, and DispEn. Additionally, CSDEn, FuzzyEn, and PerEn curves
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Fig. 3. Synthetic signals (upper row) and comparison of entropy values (lower row) obtained by CSDEn, SpEn, DistEn, DispEn, FuzzyEn, and PerEn using a
sliding window of 2048 points with 75% overlap.

display an impressive trait of stability, evident in its consistently smoother curve throughout the progression. Consequently, CSDEn
excels in its capacity to effectively characterize and delineate changes in signal frequency.

3.3. Robustness to noise

To verify the superior robustness of CSDEn to noise in non-linear and periodic signals, WGN with different signal-to-noise ratios
(SNRs) is added to four MIX signals, including MIX(0.3), MIX(0.5), MIX(0.7), and MIX(1) with the signal length of 1000. The SNRs
were varied from 40 dB to 5 dB, and 100 implementations of PerEn, DispEn, DistEn, FuzzyEn, SpEn, and CSDEn were performed
under each SNR condition to minimize the effects of randomness. The resulting mean values and standard deviations of the entropy
methods are shown in Fig. 4.

Fig. 4 offers a comprehensive illustration of our study. Entropy, serving as a metric for stochasticity, should logically exhibit
higher values for MIX(𝑝) signals with higher 𝑝 values. Therefore, in theory, the entropy ranking for the four signals is as follows:
𝐸𝑛𝑀𝐼𝑋(0.3) < 𝐸𝑛𝑀𝐼𝑋(0.5) < 𝐸𝑛𝑀𝐼𝑋(0.7) < 𝐸𝑛𝑀𝐼𝑋(1). Furthermore, even after the introduction of noise, this order of complexity should
ideally remain intact.

At an SNR of 40 dB, the curves for DispEn, FuzzyEn, and PerEn are not consistent with the complexity arrangement of different
𝑝 values. By contrast, the curves for CSDEn, SpEn, and DistEn align reasonably well with the expected complexity ranking of the
MIX process. However, as noise levels escalate and SNR decreases, the distinction between the MIX process datasets diminishes. For
example, in Fig. 4(c), with a noise level of 25 dB, the DistEn method exhibits a phenomenon of signal overlap. At an SNR of 5 dB,
DistEn, DispEn, FuzzyEn, and PerEn lose their ability to differentiate between system complexities.

In summary, the insights drawn from Fig. 4 strongly support the assertion that CSDEn and SpEn excel in combating noise
interference. These methods consistently maintain a high level of consistency across the entire SNR spectrum, ranging from 40 dB
to 5 dB. These comparisons confirm that the proposed CSDEn method possesses a distinct advantage in terms of noise robustness.

3.4. Comparison of the computational complexity

The computational complexity of entropy methods is a critical aspect to consider when assessing their performance. To evaluate
this, a common white noise series was used, and the signal length was varied from 100 to 1000 sample points. In each length
condition, 100 implementations of entropy calculation were conducted, and the mean time cost was depicted in Fig. 5. The results
indicate that the computational cost of CSDEn is comparable to PerEn, DispEn, and SpEn with the same order of magnitude, but
considerably less expensive than DistEn and FuzzyEn. This finding is consistent with the fact that the computational cost of DistEn

( 2)
8

and FuzzyEn is O 𝑁 , while the computational cost of CSDEn, PerEn, DispEn, and SpEn algorithms is O(𝑁).
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Fig. 4. Results of robustness to noise: entropy values calculated by (a) CSDEn, (b) SpEn, (c) DistEn, (d) DispEn, (e) FuzzyEn, and (f) PerEn under different SNR
values.

Fig. 5. Comparison of the computational time of CSDEn, SpEn, DistEn, DispEn, FuzzyEn, and PerEn for white noise series with different lengths.

4. Applications of real-world signals

The synthetic signals have been designed for performance verification in Section 3, but there is a large amount of interference
n the practical working environment, so the effectiveness of the proposed method needs to be further verified in the real-world
nvironment, which can be achieved in the experimental case study. Therefore, this section presents two case studies to demonstrate
he practical applications of CSDEn in signal processing, including planetary gearbox and rolling bearing.
9
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Fig. 6. The planetary gearbox system and fault gears: (a) real gearbox test rig, (b) sun gear with a spall, (c) sun gear with a breakage and (d) sun gear with a
crack.

Fig. 7. The time-domain signals and corresponding normalized spectrum of four conditions for gears: (a) Normal condition, (b) spectrum of normal condition,
(c) breakage fault, (d) spectrum of breakage fault, (e) crack fault, (f) spectrum of crack fault, (g) spall fault, (h) spectrum of spall fault.

4.1. Case study I : fault diagnosis of planetary gearbox

4.1.1. Data description of planetary gearbox
The first case study was carried out on a planetary gearbox system produced by WuXi HouDe Automation Meter, as shown in

Fig. 6(a), which consists of a motor, planetary gearbox, tachometer, and magnetic brake. Vibration signals were acquired using an
accelerometer installed on top of the gearbox casing, with a sampling frequency of 16 384 Hz. Here, the load was set as 5 N m and
the rotation speed of motor was set as 2400 rpm.

In the first experimental case, four conditions of the planetary gearbox were considered, including normal condition and three
typical gear failure types: sun gear with a spall, sun gear with a breakage, and sun gear with a crack. The visual representation
of three failure types is displayed in Fig. 6(b)–(d). It is worth noting that each type of fault signal was normalized and sliced into
100 sub-signals. Each sub-signal contained 4096 sample points, and there were 400 samples for this case study. Fig. 7 illustrates
the time-domain vibration signals and corresponding normalized spectrum of the planetary gearbox under different fault categories
and health conditions.

4.1.2. Results and analysis
In the experimental application, for comparison, seven entropy methods were conducted. It is noted that we also applied the

cumulative residual distribution entropy (CRDE) [48] for feature extraction and made comparisons to highlight the strengths of
cumulative spectrum distribution in proposed CSDEn method. CRDE is an enhanced variant of DistEn, drawing inspiration from
cumulative residual entropy. Through this comparison, we aim to accentuate the advantages in CSDEn. The comparison results are
10
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Fig. 8. Violin plots of entropy values obtained by (a) CSDEn, (b) SpEn, (c) DistEn, (d) DispEn, (e) FuzzyEn, (f) PerEn, and (g) CRDE for gear signals in different
states. (H represents healthy state, B represents breakage fault, C represents crack fault and S represents spall fault. Statistical differences between any two states
are analyzed using the Mann–Whitney 𝑈 -test, and ∗ means 𝑝 < 1𝐸 − 3, ∗∗ means 𝑝 < 1𝐸 − 4).

Table 2
Differences between entropy values using Mann–Whitney 𝑈 -test for gear data. (H represents healthy state, B represents breakage fault, C represents crack fault
and S represents spall fault).
𝑝-value Entropy method

CSDEn SpEn DistEn DispEn FuzzyEn PerEn CRDE

H vs. B 2.6E−34 1.8E−04 1.6E−05 3.3E−14 1.8E−33 2.6E−34 2.6E−34
H vs. C 2.6E−34 2.6E−34 4.2E−30 2.6E−34 2.5E−19 2.6E−34 2.6E−34
H vs. S 2.6E−34 2.6E−34 7.1E−06 3.8E−02 4.4E−31 2.6E−34 4.2E−32
B vs. C 8.2E−21 2.6E−34 8.2E−27 2.6E−34 2.6E−34 2.9E−25 1.4E−21
B vs. S 2.0E−25 2.6E−34 2.4E−01 1.1E−32 3.4E−11 4.9E−20 6.2E−29
C vs. S 4.7E−33 2.1E−06 5.6E−23 2.6E−34 2.6E−34 8.5E−01 3.4E−10

presented as violin plots in Fig. 8, which displays the full distribution of the entropy values and shows the median values of different
entropy methods for gear signals in four states.

From Fig. 8(a), it is evident that the median values of healthy and faulty states in CSDEn exhibit significant differences, facilitating
the discrimination between gear conditions. Additionally, CSDEn values in the normal state are greater than those in the faulty
states, which is consistent with the fact that after fault there are periodic faulty impulses and the signal becomes less complex [9].
Furthermore, the median entropy values for the three fault states display substantial disparities, indicating that CSDEn can not only
detect faults but also effectively discriminate between different types of gear faults.

Similarly, in Fig. 8(b), (e) and (g), SpEn, FuzzyEn and CRDE display discernible differences across various states. However, as
illustrated in Fig. 8(c), DistEn exhibits similarities in median entropy values between spall fault and breakage fault, posing challenges
for differentiation. Additionally, Fig. 8(d), (f), and (g) reveal analogous trends for DispEn and PerEn. In DispEn, the median entropy
values for healthy state and spall fault are close, making distinction difficult. In the case of PerEn, the median entropy values for
crack fault and spall fault exhibit similarity.

Moreover, in order to quantitatively assess the dissimilarities in entropy values among different states, we subjected all entropy
values to statistical analysis using the Mann–Whitney 𝑈 -test to obtain 𝑝-values for each method. A significance level of 𝑝 < 1𝐸−3
was employed to denote statistically significant differences between states, with more significant differences denoted by 𝑝 < 1𝐸−4.
The statistical results are presented in Fig. 8 and Table 2.

From Fig. 8 and Table 2, it can be found that CSDEn, FuzzyEn, and CRDE demonstrate highly significant differences in
distinguishing any two states, indicated by 𝑝-values far below 1E−4. This implies a high degree of dissimilarity between any two
conditions. SpEn delivers moderately strong results, with significant differences (𝑝 ≪ 1𝐸−4) between any two states except for H vs.
B. In contrast, DistEn, DispEn, and PerEn exhibit less favorable performance, with DistEn unable to distinguish significant differences
11
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Fig. 9. Performance comparison of seven entropy algorithms for case study I.

etween breakage fault and spall fault, DispEn failing to distinguish the healthy state from spall fault, and PerEn struggling to
istinguish crack fault from spall fault.

Additionally, machine learning was employed to compare the recognition rates of different entropy methods. In particular, the
upport vector machine (SVM) algorithm [52] was utilized for classification and fault diagnosis. To assess the performance of each
ntropy method, we randomly selected 50 samples from each state as the training set (4 × 50 samples), while the remaining 50
amples were used as the test set (4 × 50 samples). Therefore, seven entropy methods were conducted for comparisons, and twenty
rials were performed on each method to decrease random effects. The average classification results and computation time are
resented in Fig. 9.

The results in Fig. 9 demonstrate that our proposed CSDEn method achieved the highest classification accuracy compared to the
ther methods, showcasing its superior feature extraction capability. CSDEn outperformed SpEn by incorporating the concept of bin
istribution and cumulative distribution function, effectively capturing the spectrum characteristics. Additionally, the introduction
f the cumulative distribution function in CRDE improved recognition rates compared to DistEn, highlighting the effectiveness of
his function.

In addition to its exceptional classification accuracy, the proposed CSDEn method demonstrated notable advantages in terms of
omputational efficiency. It achieved the highest test classification accuracy while requiring less CPU time for feature extraction,
here CPU time refers to the total time taken for the feature extraction process. The computational cost of CSDEn was found to be

omparable to that of DispEn and SpEn, falling within the same order of magnitude. However, CSDEn exhibited significantly lower
omputational complexity compared to CRDE, PerEn, DistEn and FuzzyEn.

Specifically, CSDEn was approximately twenty times faster than DistEn and CRDE in terms of calculation efficiency, and three
imes faster than PerEn. This significant improvement in computational efficiency indicates that CSDEn not only outperforms
ther methods in feature extraction and diagnostic accuracy but also offers high-speed processing capabilities. These favorable
haracteristics make CSDEn well-suited for online detection requirements and present a promising approach for entropy-based
eature extraction.

.2. Case study II : fault diagnosis of rolling bearing

.2.1. Data description of rolling bearing
The second experimental case was also conducted on the test rig manufactured by WuXi HouDe Automation Meter, as illustrated

n Fig. 10(a), which mainly includes a motor, tachometer, rolling bearing, and magnetic brake. The load was simulated to be
enerated by magnetic damping by the magnetic damping and the load was set as 5 N m. Also, a vertical accelerometer mounted
n the bearing case was used to collect the vibration signals, and the sampling frequency was set as 10 240 Hz. Here, the motor
peed was set to 3000 rpm.

In this experiment case, different bearing failure types were implemented by replacing the test bearings, and eventually, four
onditions, in total, were designed. The fault bearings are shown in Fig. 10(b)–(d). In addition, each type of fault signal was sliced
nto 100 sub-signals and each sub-signal contains 4096 sample points. The time domain signals and the corresponding frequency
pectrum of the collected vibration signals are illustrated in Fig. 11.
12
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Fig. 10. The test rig of rolling bearing system and bearings with different fault types: (a) bearing test rig, (b) bearing with inner race fault, (c) bearing with
outer race fault, (d) bearing with ball fault.

Fig. 11. The time-domain signals and corresponding normalized spectrum of four conditions for bearings: (a) Normal condition, (b) spectrum of normal condition,
(c) ball fault, (d) spectrum of ball fault, (e) inner race fault, (f) spectrum of inner race fault, (g) outer race fault, (h) spectrum of outer race fault.

4.2.2. Results and analysis
Like Case study I, we conducted a comparative analysis employing the CSDEn, SpEn, DistEn, DispEn, FuzzyEn, PerEn, and CRDE

methods for signal analysis. The resulting entropy values of the seven different methods under four different states are presented
as violin plots in Fig. 12. Consistently, we subjected the entropy values to the Mann–Whitney 𝑈 -test to obtain 𝑝-values for each
method. The resultant differentiation outcomes are visually depicted in Fig. 12 and quantitatively summarized in Table 3.

As depicted in Fig. 12(a), the CSDEn method effectively distinguishes various operational states of bearings, demonstrating
statistically significant differences. The associated 𝑝-values, detailed in Table 3, confirm that CSDEn exhibits significant distinctions
between any two states, with 𝑝-values significantly below 1E−4. This underscores a high degree of differentiation between any pair
of conditions. Concurrently, the other comparative entropy methods also showcase notable proficiency in distinguishing between
different states of bearings, yielding statistically significant distinctions with 𝑝-values well below 1E−4.

In case study II, we conducted a similar comparison of different entropy methods in diagnostic accuracy, and to mitigate the
influence of randomness, we performed twenty trials for each method. Fig. 13 provides a visual representation of the comparison
results and computation time. Consistent with case study I, the CSDEn method achieved the highest diagnosis accuracy, exceeding
98%. Moreover, the line chart illustrates that the CSDEn approach not only outperformed other methods in terms of diagnostic
accuracy but also exhibited excellent computational efficiency. The computational cost of CSDEn was found to be comparable to that
of DispEn and SpEn, falling within the same order of magnitude. However, CSDEn demonstrated significantly lower computational
complexity compared to the other entropy methods, like PerEn, DistEn and CRDE.

These results emphasize the merits of the proposed CSDEn method in both fault feature extraction and calculation efficiency, as
observed in case study II. The CSDEn method reduces the computation time required for feature extraction while extracting more
reliable information for fault diagnosis. By striking a balance between computational efficiency and diagnostic performance, the
proposed CSDEn method offers valuable contributions to fault diagnosis in practical applications.
13
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Table 3
Differences between entropy values using Mann–Whitney 𝑈 -test for bearing data. (H represents healthy state, BF represents ball fault, IF represents inner race
fault and OF represents outer race fault).
𝑝-value Entropy method

CSDEn SpEn DistEn DispEn FuzzyEn PerEn CRDE

H vs. BF 2.6E−34 6.7E−32 2.6E−34 2.6E−34 6.1E−31 2.6E−34 2.6E−34
H vs. IF 2.6E−34 2.6E−34 2.6E−34 2.6E−34 2.6E−34 2.6E−34 2.6E−34
H vs. OF 2.6E−34 2.6E−34 2.6E−34 2.6E−34 2.6E−34 2.6E−34 2.6E−34
BF vs. IF 2.6E−34 2.6E−34 2.6E−34 2.6E−34 2.6E−34 1.1E−26 2.6E−34
BF vs. OF 2.6E−34 2.6E−34 2.6E−34 2.6E−34 2.6E−34 3.2E−06 2.6E−34
IF vs. OF 2.6E−34 2.6E−34 2.6E−34 2.6E−34 2.6E−34 5.9E−27 2.6E−34

Fig. 12. Violin plots of entropy values obtained by (a) CSDEn, (b) SpEn, (c) DistEn, (d) DispEn, (e) FuzzyEn, (f) PerEn, and (g) CRDE for bearing signals in
different states. (H represents healthy state, BF represents ball fault, IF represents inner race fault and OF represents outer race fault. Statistical differences
between any two states are analyzed using the Mann–Whitney 𝑈 -test, and ∗∗ means 𝑝 < 1𝐸 − 4).

Fig. 13. Performance comparison of seven entropy algorithms for case study II.
14
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Table 4
Parameters of five classification methods.
Method Parameters Value

SVM
Kernel function RBF
Kernel parameter 0.5
Tradeoff parameter 1

RF Estimation mode Out-of-bag
Number of trees 50

k-NN Number of nearest neighbors 5
Distance metric Euclidean

ELM Activation function Sigmoidal function
Number of hidden layer neurons 100

LR Regularization parameter 0.001

Fig. 14. Classification results of five different classifiers for case study II.

In addition, to assess the versatility of the proposed method, we also employed five different classifiers: support vector machine
(SVM), random forests (RF), k-nearest neighbors algorithm (k-NN), extreme learning machine (ELM), and logistic regression (LR).
The parameter values for each classifier are listed in Table 4. The feature sets used for classification were obtained using the CSDEn
method. The final verification results are presented in Fig. 14.

The radar diagram depicted in Fig. 14 distinctly demonstrates that features derived from CSDEn consistently yield recognition
rates exceeding 94% across a range of classifiers. The findings further establish the effectiveness and robustness of the proposed
CSDEn-based features in classification tasks. The consistently high recognition rates obtained across multiple classifiers demonstrate
the generalizability and discriminative power of these features. This aspect holds significant practical implications, indicating that
the CSDEn-based features can be successfully applied to diverse classification algorithms, thus yielding reliable and consistent results
in various real-world scenarios.

It is worth noting that in practical machine fault diagnosis applications, the choice of classifier may depend on specific dataset
characteristics and the nature of the problem. Therefore, the generalizability of CSDEn-based features to different classifiers enhances
their suitability for a wide range of diagnostic tasks, allowing practitioners to select the most appropriate classifier based on the
specific requirements and characteristics of their applications.
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Fig. 15. Diagnostic accuracies for entropy methods with different training percentage.

4.3. Diagnosis performance under challenges

4.3.1. Fault diagnosis with small sample
To assess the performance of the proposed method with a limited sample size, we conducted a comparative analysis using

different proportions of samples for training. The dataset from case study II was utilized for this evaluation. Proportions of 10%,
20%, 30%, and 40% of the samples were selected for training, while the remaining samples were used for testing. It is noted that
SVM was used for classification, following the same procedure as in previous case studies. The classification results for different
methods and varying proportions of the training set are presented in Fig. 15.

The results in Fig. 15 clearly show that the proposed CSDEn method outperforms the other five entropy methods in bearing fault
diagnosis. Remarkably, even with only 10% of training samples, the CSDEn method achieves a recognition rate of 98% or higher.
This demonstrates the method’s robustness and effectiveness in fault diagnosis, even with a limited number of training samples.
The ability to achieve high recognition rates with such a small sample size showcases the efficiency and accuracy of the proposed
method in handling data scarcity scenarios.

4.3.2. Robustness against noises
In real-world industrial applications, noise has a significant impact on the performance of feature extraction and diagnosis models.

To evaluate the robustness of the proposed CSDEn method against noise, we injected varying degrees of Gaussian white noise into
the signals from case study II. The diagnosis results under different noise levels are summarized in Fig. 16.

Fig. 16 clearly demonstrates the robustness of the proposed CSDEn method in real industrial applications with noise. As the signal-
to-noise ratio (SNR) decreases, the diagnosis accuracy of all methods also decreases. However, the proposed CSDEn consistently
outperforms the other methods in terms of diagnosis accuracy across different levels of Gaussian white noise. Even with decreasing
SNR values, CSDEn achieves high average identification accuracies, reaching 82% at SNR levels of −1 dB. This can be attributed to
the comprehensive information captured through spectrum distribution, enabling CSDEn to provide more accurate fault diagnosis
even in low SNR conditions. The robustness and resilience of the proposed method demonstrate its ability to maintain excellent
diagnostic performance in challenging noisy environments. The results also highlight the significant improvement of CSDEn over
the original SpEn, particularly when signals are contaminated by noise. This further validates the effectiveness and superiority of
CSDEn in enhancing diagnostic accuracy and robustness, making it a reliable choice for fault diagnosis in noisy environments.

Moreover, random impulse noise is a common occurrence in measured signals, often attributed to external knocks on the bearing
housing, electromagnetic interferences, measurement errors, or defects in the hardware system [53,54]. In response to this, we also
conducted experiments where we introduced varying numbers of random impulses into the signals from case study II. It is noted
that the amplitude of random impulses is set to twice the maximum value of the original signal. The results are presented in Fig. 17.

It is evident from the figure that both CSDEn and FuzzyEn exhibit robustness against random impulse noise, maintaining a
high recognition rate even as the level of impulse noise increases. Both methods consistently achieve recognition rates above 90%,
showcasing their resilience to this type of interference. In contrast, the recognition rates of CRDE and DistEn show a notable decline
as the level of impulse noise increases. These methods are less robust in the presence of such noise, with their recognition rates
decreasing significantly. While the recognition rates of SpEn, DispEn and PerEn in our study remain relatively stable, it is important
to note that their overall performance is not as strong as CSDEn and FuzzyEn.
16
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Fig. 16. Diagnostic accuracies for entropy methods under different degrees of white noise in signals.

Fig. 17. Diagnostic accuracies for entropy methods under different degrees of random impulse noise in signals.

.4. Parameter sensitivity analysis

In this subsection, we delved into the impact of the parameter 𝑀 on the performance of CSDEn. We conducted a series of
experiments using data from both case studies I and II while varying the parameter 𝑀 . The entropy features generated with different
M values were fed into the SVM classifier, following the same procedure as in previous case studies. Each parameter setting was
subjected to twenty random trials, and the resulting average accuracies and calculational time for a single sample are presented in
Table 5.

Analyzing the data from case study I, we observed a minor fluctuation in the recognition rate, oscillating between 82% and 85%.
In contrast, the case study II data exhibited a similarly slight fluctuation, with recognition rates varying within the range of 97% to
99%. These empirical findings highlight a crucial conclusion: the choice of bin number M exerts a restricted influence on the ultimate
diagnostic results. However, it is worth noting that as the parameter 𝑀 increases, there is a modest increase in computational time.

his analysis reinforces CSDEn’s exceptional stability, demonstrating its capacity to consistently maintain diagnostic performance
17

cross a spectrum of M values, further underscoring its robustness.
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Table 5
Diagnostic performance under different parameter 𝑀 for CSDEn.

Indexes Case study I Case study II

M = 32 M = 64 M = 128 M = 256 M = 512 M = 32 M = 64 M = 128 M = 256 M = 512

Accuracy (%) 84.07 83.15 82.93 83.95 82.65 97.82 98.25 98.17 98.60 98.45
Time (s) 0.0133 0.0133 0.0134 0.0138 0.0153 0.0131 0.0131 0.0139 0.0142 0.0152

5. Conclusions

This paper represents a novel entropy measure, called cumulative spectrum distribution entropy (CSDEn) that overcomes
he limitations of traditional entropy-based methods, especially spectral entropy, for fault diagnosis in rotating machinery. By
onsidering both frequency probability and frequency values in the spectrum domain, CSDEn is able to capture the frequency-
omain information of fault features and detect dynamic changes in non-linear signals with high computing efficiency and low
oise sensitivity. Moreover, experimental results show that CSDEn outperforms other widely used entropy measures in diagnosing
ifferent bearing and gear working states, demonstrating its superior performance in fault diagnosis of rotating machinery. Our
SDEn method offers unique contributions and advantages, particularly in terms of high computational efficiency, strong robustness
o noise, and its almost-parameter-free nature.

In this preliminary study, we have evaluated the effectiveness of the proposed CSDEn method in diagnosing faults under constant
oad torque and speed conditions. However, its performance under variable speed and load torque conditions remains unknown.
herefore, as part of our future work, we plan to investigate and test the effectiveness of the CSDEn method in variable working
onditions, specifically by combining it with order-tracking techniques. This will provide insights into the method’s applicability
n scenarios with varying operating conditions. Furthermore, we will expand our discussion on the incorporation of cumulative
pectrum distribution entropy and other signal preprocessing methods. By exploring the combination of these approaches, we aim
o further improve the accuracy and robustness of fault diagnosis in complex systems.
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