
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Refined time-shift multiscale diversity entropy: a
novel feature extraction algorithm for fault
diagnosis of planetary gearbox
To cite this article: Shun Wang and Yongbo Li 2022 J. Phys.: Conf. Ser. 2184 012010

 

View the article online for updates and enhancements.

You may also like
Fault diagnosis of a planetary gearbox
based on a local bi-spectrum and a
convolutional neural network
Jiang Lingli, Li Shuhui, Li Xuejun et al.

-

Investigating the vibration response and
modulation mechanism for health
monitoring of wind turbine planetary
gearboxes using a tribodynamics-based
analytical model
Junjie Li, Shuiguang Tong, Zheming Tong
et al.

-

An improved chaotic recognition method
for weak signal frequency and its
application to fault diagnosis of planetary
gearboxes
Shunxin Cao, Hongkun Li, Kongliang
Zhang et al.

-

This content was downloaded from IP address 94.124.79.74 on 27/06/2023 at 01:25

https://doi.org/10.1088/1742-6596/2184/1/012010
https://iopscience.iop.org/article/10.1088/1361-6501/ac471a
https://iopscience.iop.org/article/10.1088/1361-6501/ac471a
https://iopscience.iop.org/article/10.1088/1361-6501/ac471a
https://iopscience.iop.org/article/10.1088/1361-6501/aca927
https://iopscience.iop.org/article/10.1088/1361-6501/aca927
https://iopscience.iop.org/article/10.1088/1361-6501/aca927
https://iopscience.iop.org/article/10.1088/1361-6501/aca927
https://iopscience.iop.org/article/10.1088/1361-6501/aca927
https://iopscience.iop.org/article/10.1088/1361-6501/ac79a4
https://iopscience.iop.org/article/10.1088/1361-6501/ac79a4
https://iopscience.iop.org/article/10.1088/1361-6501/ac79a4
https://iopscience.iop.org/article/10.1088/1361-6501/ac79a4
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjstB4WnWrMlWoHHeNbE9XffmMCJ1bZXgG0LeFOQrc_X6iv9Xoxs8_QnYVSmZy1uAM8vc6Tk15mZZC1HWTMyiPrJV-bD4wfIOI-IAFarWfY7XqgXddB7yMTcmBq2H3ZypLme_nMTCKvzPNNOfKQSJoab5f7eMEIAWBpd6mvYw-rAJWGIwce8XMaKeMDz-Qy7qm1DARNNbqpjJVoRUePB575RpwPpBZ33cVmgwRjMROJEMIfLmKgq4HstC4oP2-soWrT2Rsm4TmIyVJKiDtB9z27kUE4-3R0GnYG7VlTyX-glrphKBymAN&sai=AMfl-YTE00hjtarT0sB2xr9EVX_Wdqz4BkFxgHXojxgPjF9rIlKbmZdeqKk9bXqCC087G7nDn3-S1Z8hiI1z5p4&sig=Cg0ArKJSzFHbeP8Qgw11&fbs_aeid=[gw_fbsaeid]&adurl=https://issuu.com/ecs1902/docs/2023-ecs-opportunities-boston-gothenburg-fillable-%3Ffr%3DsNDk5OTUwMDQyODg%26utm_source%3DIOPAds%26utm_medium%3DBanners%26utm_campaign%3D244Exhibit


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

14th International Conference on Damage Assessment of Structures
Journal of Physics: Conference Series 2184 (2022) 012010

IOP Publishing
doi:10.1088/1742-6596/2184/1/012010

1

 
 
 
 
 
 

Refined time-shift multiscale diversity entropy: a novel 

feature extraction algorithm for fault diagnosis of planetary 

gearbox 

Shun Wang, Yongbo Li* 

Northwestern Polytechnical University, Xian, 710072, China 

 
Abstract. Planetary gearboxes play a critical role in aerospace and heavy industry fields, such 

as wind turbines, heavy vehicles and construction machines. Intelligent fault diagnosis is 

significant for safe operation and fault prevention of planetary gearboxes. Recently, multiscale 

diversity entropy and related entropy methods are proposed to extract features of time series 

and applied for the fault diagnosis. However, there are still some limitations in fault feature 

representation and stability for multiscale diversity entropy. To solve the problem, in this paper, 

a novel planetary gearboxes fault diagnosis method via refined time-shift multiscale diversity 

entropy (RTSMDE) is proposed. First, a novel entropy algorithm called RTSMDE is proposed 

to measure the complexity of time series and extract fault features of the vibration signals, 

which is robust and efficient in performance. Then, the obtained features are utilized to fulfil 

automatically the fault pattern identifications using support vector machine. To confirm the 

superiority of the RTSMDE-based fault diagnosis method, simulated signals and experimental 

studies are constructed and three used widely methods are employed to present a 

comprehensive comparison. The results indicate that RTSMDE performs best and obtains the 

highest accuracy. 

Keywords: planetary gearbox, feature extraction, diversity entropy, and fault diagnosis. 

1. Introduction 

Planetary gearboxes play a critical role in aerospace, automotive and heavy industry fields, such 

as heavy trucks, aerospace, wind turbines, and complex mechanical transmission systems because of 

the large transmission capacity and strong load-bearing capacity. However, considering the influence 

of variable working conditions, the key parts of planetary gearboxes system such as the ring gear and 

planet gear are prone to faults including spalling, wear and pitting, which will  lead to unstable 

operation or even unexpected accidents. Therefore, it is of significance to timely recognize the faults 

for prevention of catastrophic failure and ensure reliable operations of machinery and equipment [1].  

Generally, when local faults occurs during the operation, the vibration signals of planetary 

gearbox show obvious non-linearity and non-stationarity, making linear analysis approaches useless in 

analysing these nonlinear and nonstationary signals. Meanwhile, vibration signals will be disturbed by 

environmental noise, which makes it difficult to extract fault features. Hence, feature extraction 

algorithms and intelligent fault pattern recognition of planetary gearbox become the current research 

hotspots [2], [3]. 

The widely used vibration-based signal processing methods mainly include frequency analysis, 

time analysis, time-frequency analysis and so on. Moreover, wavelets transform, empirical mode 

decomposition (EMD), full Fourier transform, and hidden Markov models are also seen as the signal 

processing tool for fault diagnosis. However, a common drawback of above algorithms is that they 

rely heavily on prior knowledge or require extensive expertise. In order to overcome this defect, the 

entropy-based approaches are introduced by conducting a quantitative complexity analysis for time 

series and diagnosing faults of the system. As a powerful nonlinear signal analysis technique, the 

entropy-based methods have been verified to be an effective method in fault diagnosis[4], which has 

its unique merits in real applications.  
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The most widely used entropy-based methods mainly include approximate entropy (AE), sample 

entropy (SE), fuzzy entropy (FE), and permutation entropy (PE), dispersion entropy (DisEn)[5]. AE 

was proposed by Pincus, which measures the complexity by computing the proportion of new states 

emerging. However, approximate entropy is a biased statistic, which lacks relative consistency in 

some cases. Therefore, SE was proposed, which relieved the bias caused by self-matching. 

Unfortunately, for SE, the Heaviside step function will cause the sudden changes of the similarity 

measurement of the template so that it leads to unreliable values for short signals and it is invalid in 

analysing short time series. Thus, Chen et al. introduced the fuzzy set theory to count the states of the 

orbits and proposed FE method, which can be seen as the improvement of SE. Unlike SE and FE 

method, PE was proposed by computing the state probability of the permutation, which has high 

calculation efficiency. However, it considers only the order of the amplitude values so that some 

information with regard to the amplitudes may be discarded. Thus, to overcome the disadvantages of 

SE and PE, dispersion entropy was proposed [6], [7] as a new indicator for complexity or  orderliness 

measurement. 

Recently, diversity entropy (DE) was proposed by Wang et al. to measure the complexity and 

uncertainty of time series[8]. DE has the merits of high consistency, high calculation efficiency, and 

strong denoising ability. Meanwhile, DE is expanded to the multiscale framework, called multiscale 

diversity entropy (MDE). However, the coarse-graining multiscale analysis used in original MDE 

generally leads to large fluctuation in different scale factors. Moreover, with the increase of scale 

factors, the coarse grained time series becomes shorter and shorter. 

In order to overcome the disadvantages of MDE, time-shift multiscale technique is introduced 

and refined diversity entropy (RTSMDE) is proposed in this paper. In the proposed RTSMDE method, 

the coarse-graining multiscale analysis is replaced by the new time-shift multiscale technique. Note 

that the time-shift multiscale analysis originates from the calculation process of Higuchi’s fractal 

dimension, which can effectively preserve the important constructing information of the original 

data[9], [10]. On this basis, the proposed RTSMDE technology is applied jointly with support vector 

machine (SVM) and a new fault diagnosis flowchart is proposed. One case study of planetary gearbox 

is conducted by comparing it with MFE, MPE and MDE-based methods. The experimental results 

show that the proposed method obtains a higher accuracy in than the state-of-the-art entropy 

technologies. 

The rest of this article is organized as follows. The original DE is reviewed and the proposed 

RTSMDE approach is introduced in Section 2. Meanwhile, simulated signals are given to verify the 

advantages of RTSMDE in Section 2. In Section 3, the RTSMDE and SVM-based fault diagnosis 

approach for planetary gearbox is proposed. Section 4 provides experimental validations using one 

case study of planetary gearbox. Finally, a conclusion is provided in the Section 5.  

 

2. Method 

2.1. Diversity entropy 

For an arbitrary time series X={ 1x ,…, ix ,…, Nx } with data length N, the steps of DE can be 

described as follows[8]: 

Step 1. According to Taken’s phase space theory [11], phase space reconstruction is carried out 

and a series of vectors can be obtained denoted as 1( ) { , , , }i i i i my m x x x   using the embedding 

dimension m  as Eq.(1).  
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Step 2. Compute the cosine similarity between the adjacent vectors to obtain a series of cosine 

similarities 1( , , )N md d  . The cosine similarity d  between two orbits is defined as follows: 

1
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                                       (3) 

Noted that the range of the cosine similarity d  is [-1, 1].  

Step 3.  Partition the scope [-1, 1] into   intervals denoted, which is expressed by ( 1 2, , ,I I I ). 

Next, calculate the probability ( 1, ,P P ), which represents the probability that cosine similarity falls 

on each interval.  

Step 4.  The DE of X={ 1x ,…, ix ,…, Nx } can be computed by Eq.(4). 

1

1
( , ) ln

ln
k k

k

DE m P P



 

                                                 (4) 

2.2. Refined time-shift multiscale diversity entropy 

With the coarse-graining technique, DE is expanded to the multiscale framework, namely MDE. 

However, the multiscale analysis used in original MDE generally leads to large fluctuation in different 

scale factors. Meanwhile, with the increase of scale factors, the obtained time series becomes shorter 

and shorter by coarse-graining technique. Thus, in order to alleviate the impact, inspired by time-shift 

multiscale analysis, RTSMDE is proposed by replacing the original multiscale analysis. The specific 

computation steps of RTSMDE can be described as follows: 

Step 1. For time series X={ 1x ,…, ix ,…, Nx }, let   and  be positive integers, where 1,  2, ,   , 

then  new time series can be constructed by: 

2, , , ,
N

u x x x x

      
 



   
 
 

 
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                                                  (5) 

where  and   represent the initial point and interval, respectively, 
N 



 
 
 

 represents the nearest 

integer that does not exceed 
N 




 . For example, let 3  ,   new sequences can be obtained after 

time-shift process, which can be displayed in Fig.1. 
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Fig.1. The illustration of time-shift multiscale analysis with 3  . 
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Step 2. For  new time series, the 
kP  of each u


 can be obtained according to step(1)-(3) of DE’s 

computation. Then, we define
1

k kP P




 

 . 

Step 3. RTSMDE of time series X={ 1x ,…, ix ,…, Nx }can be defined as 

1

1
RTSMDE( , , , ) ln

ln
k k

k

X m P P


 
 

                                              (6) 

where  is scale factor, 1    . For RTSMDE, time-shift multiscale analysis can avoid the 

neutralisation phenomenon caused by traditional coarse-graining analysis. At the same time, the 

refining technology is utilized to average the probability of each time-shift multiscale time series, 

which can increase the stability of time-shift multiscale analysis on a certain scale. There are three 

parameters needed to be set before calculation of RTSMDE method: embedding dimension m, number 

of intervals , and scale factor . According to Ref[8], m is fixed to 4 and  is fixed to 30 in this study. 

In summary, the calculation process of RTSMDE algorithm is shown in Fig. 1, and the pseudo 

code of RTSMDE is given in Algorithm 1. 

Algorithm 1 Refined time-shift multiscale diversity entropy 

Input: 

1) X : the time series 

2) m: the embedding dimension 

3)  : the number of intervals 

4)  : the scale factor 

Procedure Begin: 

1 for  =1,2,…, do 

2 Construct time shift analysis and obtain new time series u

 based on Eq.(5). 

3 Compute the 
kP valve of each u

 , and obtain the 
kP  

4 Compute RTSMDE based on Eq.(6). 

5 end for 

End procedure 

Output: RTSMDE value 

2.3. Simulated noisy signals 

In the subsection, the simulated signals are utilized to verify the merits of RTSMDE in stability. 

For comparison purpose, MDE is also utilized to process the simulated signals. Without loss of 

generality, one hundred groups of white Gaussian noises (WGN) and 1/f noises as examples are to 

verify the stability of RTSMDE method. Here, each sample signal has the length of 5000 and the scale 

factor   is set to 20 for RTSMDE and MDE methods. The obtained results are illustrated in Fig.2. 

Two conclusions can be drawn from Fig.2. First, the proposed RTSMDE curve is smoother and more 

stable than original MDE method. Second, RTSMDE method obtains smaller error bars, as illustrated 

in Fig.2, especially at larger scales. In conclusion, the numerical results have validated the proposed 

RTSMDE has the advantage of stability.  
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Fig.2. The comparisons of MDE and RTSMDE for WGN and 1/f noise: (a) analysis results of 1/f noise, (b) 

analysis results of WGN. 



14th International Conference on Damage Assessment of Structures
Journal of Physics: Conference Series 2184 (2022) 012010

IOP Publishing
doi:10.1088/1742-6596/2184/1/012010

5

 
 
 
 
 
 

 

3. The Proposed RTSMDE-based fault diagnosis approach 

The proposed RTSMDE technology is applied jointly with SVM and a new fault diagnosis 

flowchart is proposed. The proposed approach mainly includes the parts of data acquisition, 

RTSMDE-based feature extraction and SVM-based fault pattern recognition, which proceeds 

according to the following steps.  

(1) The data acquisition under different health conditions is conducted. 

(2) Segment data into 100 samples for each health condition and divide the obtained samples into the 

training set and testing set. 

(3) RTSMDE is employed to quantify nonlinearity and fault information from the vibration signals. 

(4) The obtained feature sets of the training data are fed into SVM to train a classifier. 

(5) Test the trained classifier using the features of testing set and identify the fault types of planetary 

gearboxes automatically. 

4. Engineering experiment 

In this section, experiments are conducted on a planetary gearbox system to validate the 

effectiveness of proposed fault diagnosis approach, as shown Fig.3. The test rig is mainly composed of 

the driving motor, tachometer, planetary gearbox and magnetic damping. Here, an accelerometer was 

mounted on the top of the planetary gearbox casing for acquisition of vibration signals. Note that the 

sampling frequency is set to be 10240 Hz with rotation speed of 2400PRM. Meanwhile, the 5 Nm load 

is designed to simulate the real application scenario. 
(a)

(b)

MotortachometerSensor

planetary gearbox

Magnetic damping

 
Fig.3. The experimental planetary gearbox system: (a) the layout of the test rig, (b) the test rig. 

(a) (b) (c) (d)

(e) (f) (g) (h)

 
Fig.4. (a) planet gear with a missing tooth (PGMT), (b) planet gear with a broken tooth (PGBT), (c) planet 

gear with a spalling tooth (PGST), (d) fracture of bearing cage (FBC), (e) sun gear with a spalling tooth 

(SGST), (f) sun gear with a broken tooth (SGBT), (g) sun gear with a cracked tooth (SGCT), (h) sun gear 

with a missing tooth (PGMT). 
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In the experiment, nine working conditions of planetary gear system are considered, including 

healthy gear, planet gear with a missing tooth (PGMT), planet gear with a broken tooth (PGBT), 

planet gear with a spalling tooth (PGST), fracture of bearing cage (FBC), sun gear with a spalling 

tooth (SGST), sun gear with a broken tooth (SGBT), sun gear with a cracked tooth (SGCT), sun gear 

with a missing tooth (PGMT), as illustrated in Fig.4. It is noticed that there are 100 samples for each 

health condition and this case study contains total 900 samples. The detailed description of 

experimental data is given in Table 1. Here, the time-domain waveforms of vibration signals under 

different working conditions are illustrated in Fig.5. 
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Fig.5. The time-domain waveforms of vibration signals: (a) healthy gear, (b) sun gear with a spalling tooth 

(SGST), (c) sun gear with a cracked tooth (SGCT), (d) sun gear with a broken tooth (SGBT), (e) sun gear 

with a missing tooth (PGMT), (f) planet gear with a broken tooth (PGBT), (g) fracture of bearing cage 

(FBC), (h) planet gear with a spalling tooth (PGST), (i) planet gear with a missing tooth (PGMT). 

 

 

Table 1. The detailed description of numbers of experimental planetary gearbox data sets. 

Fault class Class label 
Number of  

training data 

Number of  

testing data 

Healthy gear 1 50 50 

planet gear with a missing tooth (PGMT) 2 50 50 

planet gear with a broken tooth (PGBT) 3 50 50 

planet gear with a spalling tooth (PGST) 4 50 50 

fracture of bearing cage (FBC) 5 50 50 

sun gear with a spalling tooth (SGST) 6 50 50 

sun gear with a broken tooth (SGBT) 7 50 50 

sun gear with a cracked tooth (SGCT) 8 50 50 

sun gear with a missing tooth (PGMT) 9 50 50 

 

In the proposed fault diagnosis methodology, at first, RTSMDE is utilized to extract fault features 

with scale factor  = 20. Hence, twenty features can be obtained. Secondly, the classifier SVM is 

employed to accomplish pattern identification. Moreover, MDE, MFE and MPE are also utilized to 

accomplish fault diagnosis for comparison. In order to reduce the impact of randomness on the results, 

twenty trials are conducted in the study. The obtained diagnosis results are shown in Table 2. 
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Table 2. The diagnosis results of experimental data sets. 

Method Mean accuracy Standard deviation Average time(s) 

RTSMDE 94.21% 0.82% 33.29 

MDE 91.9% 1.13% 70.28 

MFE 91.66% 1.4% 338.52 

MPE 90.38% 1.32% 474.12 

 

Seen from Table 2, it can be observed that RTSMDE obtains the highest classification accuracy 

and the smallest standard deviation among all the methods, which confirms the advantages of time 

shift analysis in stability and feature extraction. Meanwhile, it can be found that among the time 

consumption comparison of four methods RTSMDE has the highest calculation efficiency. Moreover, 

confusion matrix of the RTSMDE-based fault diagnosis approach under nine working conditions is 

illustrated in Fig.6. The results show that the recognition accuracy of each fault state is above 85%, 

and three fault types can be identified completely, which further validates the feature extraction ability 

of RTSMDE. 
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Fig.6. Confusion matrices of the proposed method under nine working conditions. 

 

 

 

 

    

 

   

     

   

     

    

    

  

 

5. Conclusions

In this paper, a new entropy indicator, namely RTSMDE, is proposed and has been proven to be 

stability and highly efficient using multiple simulated signals. Moreover, based on RTSMDE

algorithm and SVM classifier, a novel planetary gearboxes fault diagnosis approach is proposed, and 

one case study is conducted to demonstrate its advantage in classifying various faults of planetary 

gearboxes by comparing with MDE, MFE and MPE. From the experimental results, it can be observed 

that the proposed RTSMDE can effectively recognise planetary gearbox fault states, and achieves the 

highest recognition with 94%. Meanwhile, the proposed RTSMDE-based approach obtains the highest 

calculation efficiency. In conclusion, the proposed RTSMDE is an effective approach for complexity 

measure of time series and feature extraction for planetary gearbox. In the future work, the 

effectiveness of RTSMDE will be studied in a more realistic environment.
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