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Enhanced hierarchical symbolic
sample entropy: Efficient tool for fault
diagnosis of rotating machinery
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Abstract
Intelligent fault diagnosis of rotating machinery is a key topic for industrial equipment maintenance and fault prevention.
In this study, an intelligent diagnosis approach of rotating machinery via enhanced hierarchical symbolic sample entropy
(EHSSE) is proposed. Firstly, a novel indicator termed symbolic sample entropy (SSE) is proposed for complexity mea-
sure and representation of fault information. By using symbolic dynamic filtering, the raw continuous time-series will be
discretized into symbolic data, and analysis of symbolic data is less sensitive to measurement noise, resulting in superior
robustness. Secondly, SSE is combined with enhanced hierarchical analysis to further extract fault characteristics hidden
in both low- and high-frequency components. To study the performance of SSE and EHSSE, multiple simulated signals
and experimental studies are constructed and three widely used entropy methods are employed to present a compre-
hensive comparison. The comparison results show that EHSSE performs best in diagnosing various faults of planetary
gearbox and rotor system with highest identification accuracy compared with other entropy-based approaches.
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Introduction

The rotating machinery has been widely utilized in
mechanical equipment as an important part of mechan-
ical transmission system.1,2 However, during the actual
operations, the key components of rotating machinery
such as gear, bearing, and rotor are particularly prone
to damage due to harsh working environments. Hence,
the health state monitoring and fault diagnosis for
rotating machinery has important practical significance
in prevention of catastrophic failure and ensure reliable
operation of industrial equipment.3–5

In past decades, on account of the health state mon-
itoring and fault diagnosis, numerous investigations
have been done on dynamic modeling, vibration signal
processing, and intelligent fault diagnosis.6 By means of
modeling, several fault states like pitting, crack, missing,
and wear, can be modeled. These models of rotating
machinery may be conducive to understand the response
behaviors of mechanical system,7,8 thus they can provide
valuable help for fault detection and diagnosis.9,10

Moreover, the signal processing methods have been
studied. Among signal processing methods, extracting
suitable features and recognizing related patterns play a
significant role for machine health monitoring.

In recent years, for quantitative analysis of system
dynamics, researchers have proposed various signal
complexity or orderliness indicators, especially the
entropy-based tools.11 The most widely used entropy-
based methods mainly include approximate entropy
(AE),12 sample entropy (SE),11 permutation entropy
(PE),13 symbolic dynamic entropy (SDE),14 dispersion
entropy,15 fuzzy entropy (FE),16 and multiscale-based
entropy methods.17 The above entropy indicators have
been widely used in the diagnosis of different types of
faults for bearing, planetary gearbox and other indus-
trial equipment.18

For example, Yan et al. introduced AE to accom-
plish fault information extraction of rotating machin-
ery.19 multiscale sample entropy (MSE)-based features
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were conducted and utilized for the fault information
representation of rolling bearings by Zhang et al.20

Compared with SE, FE has a better performance
because of the introduction of fuzzy function. As
Zheng et al.21,22 reported, FE can be highly sensitive to
the dynamical change; thus FE can get a good perfor-
mance in the health state monitoring of equipment.
Moreover, Cheng et al. proposed a fault diagnosis
method for planetary gear via fusion of ensemble
empirical mode decomposition (EEMD)-based entropy
feature .23 multiscale permutation entropy (MPE) was
used for the fault feature extraction of rolling bearing
signals by Li et al.24 Further, Li et al.14 proposed mul-
tiscale SDE for the fault diagnosis of planetary gear-
box, in which symbolic dynamic filtering (SDF) and
state transition probability are introduced and com-
bined with PE. Simulation and experimental case
studies have verified that SDE obtains better perfor-
mance and faster computation efficiency than SE and
PE. Xu et al.25 combined empirical mode decomposi-
tion (EMD) with symbolic entropy and proposed a
fault flowchart for the diagnosis of bearing. Recently,
multiscale fuzzy entropy-based on Euclidean distance
was proposed,26 which measures the similarity by the
Euclidean distance.

Multiscale-based entropy methods, with a powerful
ability for feature representation, has made vast
inroads into the field of healthy condition monitoring
of machines. However, the existing multiscale entropy
methods still have two large obstacles in feature extrac-
tion: high-frequency information loss and poor robust-
ness to disturbances and noises. First, the traditional
coarse-graining multiscale analysis aims to obtain dif-
ferent scale series via averaging operation; however,
the average operation is similar to smoothing the raw
signal, which discards the information embedded in
high-frequency component of signals. Second, in real-
world data, the collected signals are distorted by distur-
bances and noises. Direct usage of the entropy without
the noise reduction will seriously affect the accuracy of
complexity estimation.

Therefore, the enhanced hierarchical symbolic sam-
ple entropy (EHSSE) method is proposed to handle the
above problems. On the one hand, SDF is introduced
to reduce the noise-related fluctuations and increase
the robustness under low-signal to noise ratio (SNR)
environment. By using SDF, the raw time-series will be
discretized into symbolic data, so that the noise-related
components will be reduced. On the other hand, to cap-
ture the fault characteristics from both high-frequency
and low-frequency components, the enhanced hierarch-
ical analysis strategy is proposed, which uses modified
moving-averaging and moving-difference process to
generate the multiple series for comprehensive feature
extraction. Aside from that, a novel fault diagnosis

flowchart via EHSSE algorithm is proposed to accom-
plish fault type identification and diagnosis of rotating
machinery. To confirm the effectiveness, two experi-
mental case studies are constructed and three widely
used methods are employed to present a comprehensive
comparison. It has been shown that the proposed
EHSSE performs better for the fault type identification
and obtains the highest classification accuracy in com-
parison to widely used multiscale entropy-based meth-
ods. Overall, the proposed EHSSE method provides
promising solution for achieving fault diagnosis with
noise reduction and weak fault information extraction.

The remainder of this article is organized as follows.
The concepts and calculation process of SSE and
EHSSE methods are first introduced in ‘‘Method.’’ In
‘‘Simulation evaluation,’’ several simulation tests are
designed and conducted to demonstrate the superiority
of the proposed method. ‘‘Flowchart of proposed intel-
ligent fault diagnosis method’’ describes the main steps
of EHSSE-based diagnosis flowchart for rotating
machinery. In ‘‘Case studies,’’ performance of the pro-
posed method for recognizing fault state is shown by
two case studies of rotating machinery. Lastly, in
‘‘Conclusions,’’ we conclude this article.

Method

Symbolic sample entropy

SSE employs a two-step procedure to enhance the abil-
ity in computation efficiency and robustness. First, the
SDF approach is used for denoizing purpose and con-
version of the signal to the symbol sequence. Secondly,
the variant form of SE is calculated based on symbolic
sequences to measure the complexity and characterize
the information of signals.

For a time-series S = fs1, :::, si, :::, sNg with length N ,
the detailed steps of proposed SSE are as follows.

Step 1 Convert the time-series S into symbolic
sequence y = fy1, y2, . . . , yNg with e numerical symbols.
With the help of maximum entropy partitioning,27 a
discrete space is generated from a continuous state
space, and subsequently the symbol sequence is
obtained.
Step 2 According to Taken’s Embedding theorem, con-
struct embedding vectors with dimension m, which
takes the form of equation (1).

sm
i = fyi, yi + 1, . . . , yi + m�1g, 1<i<N � m ð1Þ

Step 3 If two symbol vectors sm
i and sm

j are equal, i 6¼ j,
(sm

i , s
m
j ) is called as an m-dimensional matched vector

pair. Here, numm is obtained to indicate the total num-
ber of matched vector pairs under dimension m.
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Step 4 Repeat Steps (1)–(3) under dimension m + 1,
and then numm + 1 can be used for indicating the vector
pair number under dimension m + 1.
Step 5 Compute SSE value by the logarithm of the
ratio of numm + 1 to numm, that is

SSE= � ln
numm + 1

numm
ð2Þ

Enhanced hierarchical symbolic sample entropy

The entropy that describes the characteristics over a
single scale contains poor fault information. To
improve the feature representation capacity of entropy,
enhanced hierarchical analysis is carried out in this
subsection and then EHSSE is proposed. Hierarchical
analysis was proposed by Jiang et al.,28 which can eval-
uate the complexity from both low- and high-frequency
components. Nonetheless, the traditional hierarchical
procedure will reduce the length of sequence with
the increase of hierarchical layer k, thus losing the sta-
tistical reliability. To overcome this shortcoming,
EHSSE is introduced, where multiple series are
generated from a single time-series by using modified
moving-averaging and moving-difference process and
then processed individually by using SSE. The length
of sequence will not basically decrease with the increase
of hierarchical layer k so that EHSSE performs better
in stability comparing with conventional multiscale
analysis and hierarchical analysis. Meanwhile, the pro-
posed EHSSE gets rid of the requirement of data
length N = 2n in the conventional hierarchical proce-
dure. The detailed calculation steps are as follows.

Step 1 Define averaging operator Q0 and difference
operator Q1. For a given a time-series Xfx(1),
x(2), . . . x(i), . . . , x(N)g, the operators can be expressed
as follows:

Q0 xð Þ=
x(i) + x(i + 1)

2
i = 1, 2, . . . ,N � 1 ð3Þ

Q1 xð Þ=
x(i)� x(i + 1)

2
i = 1, 2, . . . ,N � 1 ð4Þ

where the averaging operator Q0 and difference opera-
tor Q1 represent the low- and high-frequency informa-
tion of time-series, respectively.

Step 2 Illustrate the operators Qj ( j = 0or 1) for the
k-th layer using a matrix as follows:

Qk
j =

1
2

(�1)
2

j
0 . . . 0 0

0 1
2

(�1)
2

j
. . . 0 0

0 0 1
2

. . . 0 0

..

. ..
. ..

. ..
. ..

.

0 0 0 . . . 1
2

(�1)
2

j

2
6666664

3
7777775

(N�1)3N

ð5Þ

Step 3 The e-th hierarchical component Xk, e for the k-
th layer can be obtained using equation (6) based on
the operator matrix Qk

j .

Xk, e = Qk
rk
� Qk�1

rk�1
� � � � � Q1

r1
� X ð6Þ

where e is hierarchical node number. For a nonnegative
integer e, there is a unique vector ½r1, r2, . . . , rk � corre-
sponding to it based on equation (7).

e =
Xk

l = 1

2k�lrl ð7Þ

where rl, l = 1, :::, kf g 2 f0, 1g:

Step 4 Repeat Steps (1)–(3) for each node until all
(2n + 1 � 1) hierarchical components are obtained.
Step 5 Calculate the SSE value of hierarchical compo-
nents for each layer and then augment the SSE value
as follows.

EHSSE1:j = fEHSSE1:j�1; SSE(Xk, e,m, e)g ð8Þ

In the enhanced hierarchical decomposition proce-
dure, since both the modified averaging and differential
procedures are utilized, EHSSE can extract fault fea-
tures from both low- and high-frequency component.
For better understanding, the enhanced hierarchical
analysis is illustrated in the hierarchical tree diagram,
Figure 1. In summary, pseudocode of EHSSE is shown
in Algorithm 1 and the flowchart of EHSSE is illu-
strated in Figure 2.

Algorithm 1: EHSSE

Input: X: Time domain signal
m: Embedding dimension
e: Symbol number
n: Number of hierarchical layer

Output: EHSSE: the entropy value
1 for k 2 ½1, n� do
2 Conduct the operator matrix Qk

j
Generate the hierarchical component Xk, e

Calculate the SSE value of Xk, e

Augment the value
EHSSE1:k = fEHSSE1:k�1; SSE(Xk, e,m, e)g

3 endfor

Wang et al. 1929



In the article, enhanced hierarchical analysis is pro-
posed using modified moving-averaging and moving-
difference process to extract information from both
low- and high-frequency components. To demonstrate
this property, the simulated gear signal in ‘‘Impulse
detection’’ is used. Here, the signal of slight fault con-
dition is analyzed using enhanced hierarchical analysis,
and the spectrum of two hierarchical signals under
layer n = 2 is obtained as shown in Figure 3. It can be
found from Figure 3 that there are more low-frequency
components in hierarchical signal X2, 0, and there are
more high-frequency components in hierarchical signal
X2, 3. The phenomenon indicates that the proposed
hierarchical analysis can extract information from both
low- and high-frequency components.

Simulation evaluation

In this section, the simulated signals have been imple-
mented to verify the superiority of SSE by comparing

with SE, FE, and PE methods. Here, the parameter
setting of SSE is as follow: m = 2, e = 5. In addition, the
corresponding parameters of SE, FE, and PE are
selected following Li et al.11 and Zhang et al.29 The
embedding dimension m of PE are set as: m = 6 follow-
ing Zhang et al.29 The two parameters of SE and FE
are set as: m = 2 and the tolerance r = 0:15 following Li
et al.11 The effectiveness of the parameters of SE, FE,
and PE methods has been verified using both simulated
and experimental signals in the mentioned references.

Robustness

In order to study the noise robustness of SSE, four
types of basic signals: frequency modulate signal,
amplitude modulate signal, frequency and amplitude
modulate signal, and sinusoid signal are studied. The
four signals can be expressed in equations (9) to (12).

y = sin (2p30:131:0312tt) ð9Þ

Figure 1. Schematic diagram of the enhanced hierarchical analysis: (a) modified moving-average and moving-difference procedure
and (b) hierarchical tree.

1930 Structural Health Monitoring 22(3)



y = sin (2pt)3 sin (0:2pt) ð10Þ

y = sin (2p30:131:0312t3t)3 sin (0:2pt) ð11Þ

y = sin (2pt) ð12Þ

We add white Gaussian noise at different noise lev-
els into four types of basic signals to study the robust-
ness. It is noticed that SNR value varies from 30 to 0
dB and the step is 1 dB. Here, each signal contains
2048 points and the sampling frequency is 16 Hz. The
obtained simulated signals are illustrated in Figure 4.
Because the values of these four methods are not in the

same dimension and a direct comparison between the
entropy values will fail to accurately show the robust-
ness. Therefore, the rate of increment for each method
is calculated for comparing the robustness. The rate of
increment I is defined as equation (13).

I =
H � H0

H0

3100% ð13Þ

where H represents entropy value under current SNR
environment and H0 represents entropy value of initial
SNR environment. Here, H0 is the entropy value of
SNR = 30 dB.

To reduce randomness, 10 trials are performed. The
average increment rate I of four entropy methods is
given in Figure 5. Obviously, the higher the increment
rate, the worse the robustness for the same SNR is. As
seen from Figure 5, SSE obtains the slowest increasing
rate in the four basic signal tests. To get an intuitive
result, the threshold is set as 10%. From Figure 5, we
can obtain the point where the increasing rate exceeds
the threshold, shown in Table 1.

From Table 1, it can be observed that SSE curve
has the smallest critical point value and the critical
point is 5, 16, 8, and 6 dB for four signals, respectively.
The phenomenon indicates that SSE performs best in
robustness than other methods in comparison. In addi-
tion, as seen from Figure 3, it can be found that SSE
has the smallest standard deviation in the four basic
signal tests. In summary, SSE has the best robustness
ability with smallest increasing rate and standard
deviation in four basic signal tests, which means that
SSE can work with heavier background noise than SE,
FE, and PE.

Impulse detection

To verify the performance of SSE in fault-related tran-
sient identification, signals corresponding to gear fault

Figure 2. Flowchart of enhanced hierarchical symbolic sample
entropy

(a) (b)

Figure 3. The examples of information extraction from high- and low-frequency components for enhanced hierarchical analysis:
the spectrum of (a) X2, 0 and (b) X2, 3.

Wang et al. 1931



are simulated as per Liang et al.30 Table 2 lists the para-
meters of a spur gearbox. A dynamic model is used and
three types of pitting levels are simulated, including
slight pitting, medium pitting, and severe pitting. Note
that the signals of three types of levels are spliced into
one signal and the data length of generated signal is
61,440, as illustrated in Figure 6(a). Here, sliding win-
dows of length 2048 data points at a step length of 512
is used for cutting out the signal. In order to assess the
fault-related transient identification ability, the first five
samples are considered as the normal sample and abso-
lute distance of other samples from the first five sam-
ples are calculated, as shown in Figure 6(b) to (e).

From Figure 6(b) and (d) it can be seen that SE and
PE can hardly detect the impulses and represent large
fluctuation when periodical impulses are generated.
This phenomenon indicates that SE and PE have poor
ability to distinguish the noise and periodical impulses.
On the contrary, FE has less fluctuation than SE since
FE has utilized fuzzy set theory for complexity measure
so that FE obtains more robust results in impulse
detection. However, FE can hardly detect the impulses
derived from slight fault. In comparison to other meth-
ods, our proposed SSE can track all periodical impulses
derived from three crack fault severities with least fluc-
tuation, as illustrated in Figure 6(e). In summary, it is
validated that the SSE algorithm has the best ability in
impulse detection.

Calculational efficiency

The computational complexity for SE, FE, and PE are
O(n2), O(n2), and O(n), respectively,31,32 as shown in
Table 3. According to the definition of SSE, SSE has a
computational complexity of O(n). In addition, in
order to intuitively investigate the calculational effi-
ciency, the calculation time of simulated signals in
‘‘Impulse detection’’ is counted and the results for four
entropy method are presented in Table 3. It is noticed
that a core I5-9400F@2.9GHz computer with 16 GB
RAM is used. The matlab version utilized is R2018. As
for the simulated signals, computational cost of SSE is
20 times lower in compare to other entropy methods.
The phenomenon indicates that the combination of SE

Figure 4. Four basic signals: frequency modulate signal (FM),
amplitude modulate signal (AM), frequency and amplitude
modulate signal (FM-AM), and sinusoid signal (SIN) with
different SNR: (a) FM, (b) AM, (c) FM-AM, and (d) SIN.

Figure 5. The performances of four entropy statistics on
robustness for four basic signals: (a) frequency modulate signal
(FM), (b) amplitude modulate signal (AM), (c) frequency and
amplitude modulate signal (FM-AM), and (d) sinusoid signal (SIN).

Table 1. The critical points of four entropy methods in noise
testing.

Method SSE (dB) PE (dB) FE (dB) SE (dB)

FM 5 24 24 25
AM 16 25 24 27
FM-AM 8 23 23 25
SIN 6 22 24 25

AM: amplitude modulate signal; FE: fuzzy entropy; FM: frequency

modulate signal; FM-AM: frequency and amplitude modulate signal;

SSE: symbolic sample entropy; SIN: sinusoid signal; SE: sample entropy;

PE: permutation entropy.
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and SDF can improve significantly the calculation
efficiency.

Parameter Analysis

Values of three parameter m, k, and e are needed to be
determined for the proposed method. The dimension m

denotes the length of vectors to be matched. Here, rele-
vant dynamic process can be reconstructed in more
detailed manner with a larger m value. On the con-
trary, a large value of m results in a longer time-series,
which is difficult to achieve in practical application.
According to Chen et al.,16 value of m is taken as 2.
The number of hierarchical layers k is related to the
numbers of features. A small number of hierarchical
layer will result in poor performance of feature extrac-
tion, and a large layer will lead to dimensionality disas-
ter and increasing calculation cost. Hence, here, n is
recommended to be set as 3 in this study.

As the last parameters, symbol number is repre-
sented by e. Logistic dataset fx xi + 1 = Rxi(1� xi)gj has
been used to study the performance of SSE for differ-
ent values of e (where x1 is set as 0.1). Values of e are
selected for different values of R such as R = 3.5, 3.7,

3.8, and 3.9. The sequence is generated following 200
points, and length N of time-series is 1000. It is worth
noting that R = 3.5 produces periodic dynamic beha-
vior, while R = 3.7–3.9 produces signals with increas-
ing complexity. Due to the fact that the higher the
complexity, the higher the entropy, theoretically, the
entropy value order of four signals should be listed as:
EnR = 3:5\EnR = 3:7\EnR = 3:8\EnR = 3:9. The obtained
entropy values with different e are illustrated in Figure
7. As can be seen, a mixing phenomena happens for the
value of e as 3. However, for e values more than 5, SSE
values are well in coordination with the values of R.
Generally, with the incorporation of more and more sym-
bols, noise resistance ability gradually decreases. On the
contrary, the smaller the number of symbols, the more
serious the information loss, thus making it difficult for
SSE to extract sufficient and useful fault information.
Hence, e is advised to be set as 5–15, and e = 10 is
selected in the further experimental study.

Flowchart of proposed intelligent fault
diagnosis method

In this study, a rotating machinery fault diagnosis
approach is proposed based on EHSSE algorithm. The

Table 2. Parameter setting of the simulated gear set.

Parameters Pinion (driving) Gear (driven)

Number of teeth 19 31
Number of teeth 3.2 3.2
Pressure angle 20� 20�
Mass (kg) 0.700 1.822
Face width (m) 0.0381 0.0381
Young’s modulus (Pa) 2:06831011 2:06831011

Poisson’s ratio 0.3 0.3
Base circle radius (mm) 28.3 46.2
Root circle radius (mm) 26.2 45.2
Bearing stiffness (N/m) k1 = k2 = 5:03108

Bearing damping (kg/s) c1 = c2 = 4:03105

Torsional stiffness
of shaft coupling (N/m)

kp = kg = 4:03107

Torsional damping of
shaft coupling (kg/s)

cp = cg = 3:03104

Figure 6. Comparison of impulse detection ability of different
entropy methods: (a) time-series of simulated gearbox fault
signal, (b) SE, (c) FE, (d) PE, and (e) SSE.
SE: sample entropy; PE: permutation entropy; FE: fuzzy entropy;

SSE: symbolic sample entropy.

Table 3. Computational complexity and calculation time of SE,
FE, PE, and SSE entropy methods.

Method Computational complexity Calculation time (s)

SE O(n2) 34.48
PE O(n) 25.18
FE O(n2) 153.24
SSE O(n) 1.25

SE: sample entropy; PE: permutation entropy; FE: fuzzy entropy;

SSE: symbolic sample entropy.

Wang et al. 1933



overall framework is illustrated in Figure 8 and the
detailed procedures can be summarized as follows:

(1) The data acquisition under different health condi-
tions is conducted.

(2) The data is segmented into signal samples for each
condition and samples are divided into the train-
ing set and testing set.

(3) EHSSE is employed to quantify nonlinearity and
characterize fault information from the vibration
signals.

(4) The obtained entropy features of the training set
are fed into support vector machine (SVM) to
train a classifier.

(5) Test the trained SVM classifier using features of
testing set and accomplish the fault pattern recog-
nition of rotating machinery.

It is pertinent to mention here that we ultilize a grid
search approach33 with fivefold cross-validation34 to
conduct the optimization of SVM.

Case studies

In this Section, two experimental case studies are car-
ried out to assess the superiority of EHSSE-based algo-
rithm for fault diagnosis of rotating machinery.

Case study I

Test rig. The first case study was conducted on a plane-
tary gearbox system, as shown in Figure 9. The test
rig is mainly composed of the driving motor, tach-
ometer, planetary gearbox and magnetic damping.
Specifications of planetary gearbox are listed in Table

4. An accelerometer was installed on the top of plane-
tary gearbox casing to collect the vibration signals. In
the case study, the different types of damages include
wearing tooth, broken tooth, cracked tooth, and spal-
ling tooth, as illustrated in Figure 10. In this case study,
data sampling frequency is 16 kHz and the rotation
speed is set as 1200 rpm. Moreover, the 5 Nm load is
designed to simulate real-world applications.

In total five types of health conditions are consid-
ered in this experimental case study, including healthy
gear, planet gear with a broken tooth (PGBT), planet
gear with a spalling tooth (PGST), planet gear with a
cracked tooth (PGCT), and planet gear with a wearing

Figure 7. Performance of SSE with different parameter e.
Figure 8. The flowchart of EHSSE-based diagnosis approach.

Figure 9. The planetary gearbox system of case study 1:
(a) the layout of the test rig and (b) the experimental test rig.
PGBT: planet gear with a broken tooth; PGCT: planet gear with a

cracked tooth; PGST: planet gear with a spalling tooth; PGWT: planet

gear with a wearing tooth.
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tooth (PGWT), as shown in Table 5. It is noticed that
there are 100 samples for each health condition and
this case study contains total 500 samples as shown in

Table 5. The measured vibration signals under differ-
ent types of fault states as well as health working con-
dition are shown in Figure 11.

Experimental results. To verify the feature performance
of the proposed method, existing entropy methods,
including MSE, MPE, and multiscale fuzzy entropy
(MFE) are also utilized to extract the weak fault char-
acteristics. In addition, multiscale symbolic sample
entropy (MSSE) and enhanced hierarchical sample
entropy (EHSE) are also implemented to verify the
advantage of symbolization and enhanced hierarchical
analysis, respectively. Here, we set scale parameter
t = 15 in multiscale-based entropy methods for MSE,
MFE, MPE, and MSSE methods. Also, we set the
hierarchical parameter k = 3 in EHSE and proposed
EHSSE. The other parameter settings of comparison
methods are as follows: m = 2 and r = 0:15 in MSE and
EHSE; m = 6 in MPE; m = 2 and r = 0:15 in MFE; m = 2

and e = 10 in MSSE. Note that 20 trials are conducted
to reduce the randomness effect on the final results.
The obtained diagnostic results of six methods are
given in Table 6.

It can be observed from Table 6 that among six
methods, EHSSE method obtains the highest classifica-
tion accuracy of 99.88% with the smallest standard
deviation of 0.17%. The accuracy order is: EHSSE .

EHSE . MFE . MPE . MSSE . MSE, which fur-
ther confirms the superiority of EHSSE in feature
extraction. First, it implies that the feature extraction

Table 5. Description of the analyzed planetary gearbox system
fault patterns for case study I.

Fault class Class label Number of
training data

Number of
testing data

Normal 1 75 25
PGBT 2 75 25
PGST 3 75 25
PGCT 4 75 25
PGWT 5 75 25

PGBT: planet gear with a broken tooth; PGST: planet gear with a

spalling tooth; PGCT: planet gear with a cracked tooth; PGWT: planet

gear with a wearing tooth.

(a)

(b)

(c)

(d)

(e)

Figure 11. The time-domain waveforms of five health
conditions for planetary gearbox: (a) healthy gear, (b) PGBT,
(c) PGST, (d) PGCT, and (e) PGWT.
PGBT: planet gear with a broken tooth; PGCT: planet gear with a

cracked tooth; PGST: planet gear with a spalling tooth; PGWT: planet

gear with a wearing tooth.

Table 6. Diagnosis results of planetary gearbox system for
case study I.

Method Mean testing accuracy (%) Standard deviation (%)

EHSSE 99.88 0.17
MSSE 89.28 2.76
EHSSE 98.72 0.89
MSE 33.84 23.99
MFE 91.48 2.14
MPE 90.28 2.99

EHSSE: enhanced hierarchical symbolic sample entropy;

MSSE: multiscale symbolic sample entropy.

Figure 10. Figure 10. (a) PGBT, (b) PGCT, (c) PGST, and (d)
PGWT.
PGBT: planet gear with a broken tooth; PGCT: planet gear with a

cracked tooth; PGST: planet gear with a spalling tooth; PGWT: planet

gear with a wearing tooth.

Table 4. Configuration parameters of the planetary gearbox
for case study I.

Parameter Value

Rotating speed 1200 rpm
Load 5 Nm
Sample frequency 16 kHz
Number of teeth for sun gear 21
Number of teeth for planet gear 31
Number of teeth for ring gear 84

Wang et al. 1935



ability of EHSSE has been greatly improved than the
original MSE method. Second, compared with EHSE,
MSSE, and MSE methods, it can be found that the fea-
ture extraction capability of SE can be also enhanced
via combination with SDF or enhanced hierarchical
analysis. This is because that EHSSE method deeply
incorporates the advantages of SDF and enhanced
hierarchical analysis. The symbolization processes can
reduce the noises so that our EHSSE method has better
performance in denoizing ability. Moreover, the
enhanced hierarchical analysis is proposed to extract
more fault information with higher stability compared
with the traditional multiscale-based entropy methods.

For further analysis, the visualization representation
of all entropy feature distributions is given in Figure
12. In order to intuitively analyze the feature space, we
applied the t-distributed stochastic neighbor

embedding (t-SNE) algorithm to project the features
onto a two-dimensional space. The cluster ability indi-
cates the feature extraction ability: the smaller inner-
class distance among samples within the same cluster
and the larger inter-class distance among clusters, the
better the feature extraction ability of the entropy
method. As can be seen from Figure 12(a), EHSSE fea-
tures of the five different types have been clustered and
each cluster can be clearly separated. However, the fea-
ture representation of other entropy methods is mixed.
Therefore, there is a nice clustering result for EHSSE
when comparing with the other entropy-based meth-
ods, which further verify the superiority of EHSSE in
extracting the fault information.

It also can be seen that MSSE method performs bet-
ter compared with MSE method due to that the condi-
tion of PGWT can be separated using MSSE method.
The phenomenon validates the advantage of SDF.
Moreover, from Figure 12(b) and (f), it can be found
that the four conditions of PGWT, PGBT, PGCT, and
PGST have clearer boundary compared with MSE
method. Overall, both enhanced hierarchical analysis
and SDF are effective to enhance the feature extraction
ability.

Case study II

Test rig. In this experiment, rubbing fault of a rotor test
rig and faults of bearing operating under different
working condition have been studied. Experimental set
up is demonstrated in Figure 13, which mainly consists
of rotating shaft, blade disc, casings, bearings, and sen-
sor. Here, data sampling frequency is 10 kHz and the
rotation speed is constant with 3000 rpm.

During the experimental process, ten working con-
ditions are carried out, including normal condition, six
single-fault conditions and three compound fault con-
ditions. The six single-fault conditions include full
annular rubbing (FAR), cracked blade, crack in bear-
ing inner ring (CIR), crack in bearing outer ring,
cracked leaf disc (CLD), shaft rubbing (SR). Here,
rotor FAR denotes that the rotor is always in contact
with a fixed point and SR represents that the shaft con-
tacts with a fixed point of stator. Meanwhile, the three
compound fault conditions include shaft rubbing with
crack in bearing inner ring (SR-CIR), crack of leaf disc
with shaft rubbing (CLD-SR), and full annular rub-
bing with shaft rubbing (FAR-SR).

It is noticed that there are 100 samples for each
health condition and this case study contains total 1000
samples. These details are given in Table 7. Figure 14
illustrates signals under 10 working conditions. Then,
the diagnostic process shown in Figure 8 is utilized for
fault pattern recognition. Also, the accuracy of 20 tests

(a) (b)

(c) (d)

(e) (f)

Figure 12. Feature visualization of case study I via t-SNE:
feature representations extracted by four entropy methods:
(a) EHSSE, (b) MSE, (c) MFE, (d) MPE, (e) MSSE, and (f) EHSE.
EHSSE: enhanced hierarchical symbolic sample entropy; MSSE: multiscale

symbolic sample entropy; EHSE: enhanced hierarchical sample entropy.
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is used to verify the superiority of proposed EHSSE-
based method.

Experimental results. Like case study I, EHSSE is firstly
applied to extract features with hierarchical layer n = 3.
Next, SVM is employed for pattern recognition. In
addition, MSSE, EHSE, MSE, MFE, and MPE are all
employed for comparison and the diagnostic results
are presented in Table 8.

Generally, the diagnostic performance for each
method is similar to case study I. In this context, the
experimental results can be summarized as follows.
First, the highest mean classification accuracy can be
obtained by the proposed EHSSE with 99.58%, which
further validates the superiority of EHSSE in fault
characteristic extraction. Meanwhile, the accuracy
order is: EHSSE . MFE . EHSE . MSSE . MPE
. MSE. Second, EHSSE obtains the smallest standard
deviation value of 0.39%, which conflrms the stability
advantage of enhanced hierarchical analysis. Finally,
as the improved methods of MSE, MSSE, and EHSE
perform better than the original MSE method, which
verify the effectiveness of SDF and enhanced hierarchi-
cal analysis respectively.

Also, two-dimensional figures can be obtained using
t-SNE approach, as shown in Figure 15. It is found
from Figure 15(a) that there are 10 distinct class cen-
ters which makes the classification task easy for SVM.
On the contrary, for other entropy algorithms, some of
the samples are scattered away from the distinct class.

Figure 14. The time-domain signals of 10 working conditions
for rotor system: (a) healthy condition, (b) full annular rubbing,
(c) cracked blade, (d) crack in bearing inner ring, (e) crack in
bearing outer ring, (f) cracked leaf disc, (g) shaft rubbing,
(h) shaft rubbing with cracked inner race, (i) crack of leaf disc
with shaft rubbing, and (j) full annular rubbing with shaft rubbing.

Table 7. Description of the analyzed rotor system fault
patterns for case study II.

Fault class Class label Number of
training data

Number of
testing data

Normal 1 75 25
FAR 2 75 25
CB 3 75 25
CIR 4 75 25
COR 5 75 25
CLD 6 75 25
SR 7 75 25
SR-CIR 8 75 25
SR-CLD 9 75 25
FAR-SR 10 75 25

CB: cracked blade; CIR: crack in bearing inner ring; COR: crack in

bearing outer ring; CLD: crack of leaf disc; SR: shaft rubbing;

SR-CIR: shaft rubbing with cracked inner race; SR-CLD: shaft

rubbing with crack of leaf disc; FAR: full annular rubbing; FAR-SR: full

annular rubbing with shaft rubbing.

Figure 13. The sketch of the rotor test rig: (a) rotor test rig
and (b) component diagram of rotor test rig.

Table 8. Diagnosis results of rotor system for case study II.

Method Mean testing accuracy (%) Standard deviation (%)

EHSSE 99.58 0.39
MSSE 87.38 1.49
EHSE 95.24 1.16
MSE 63.74 2.91
MFE 96.56 1.14
MPE 85.90 1.46

EHSSE: enhanced hierarchical symbolic sample entropy;

MSSE: multiscale symbolic sample entropy; EHSE: enhanced

hierarchical sample entropy.
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This validates the effectiveness of EHSSE in feature
extraction. Among them, MSE performs worst due to
the high degree of scattering of relevant samples and
indistinguishable boundary condition. Compared with
MSE method, the features generated using MSSE and
EHSE has a better clustering phenomenon as shown in
Figure 15(b), (e), and (f). This is because the combina-
tion of SDF can reduce the noise-related fluctuations
and increase the robustness under low-SNR environ-
ment. Moreover, the combination of enhanced hier-
archical analysis can capture comprehensively the fault
characteristics from both high-frequency and low-
frequency components. Hence, MSSE and EHSE has a
better feature extraction ability compared with original
MSE method.

Efficiency of the proposed method is assessed by
varying the percentages of training samples (the rest

samples are used as test samples) as 15%, 30%, 45%,
60%, 75%, and 90%. For ensuring the robustness, 20
trials are performed for each selected percentages of
test data. Figure 16 illustrates the mean testing accura-
cies. As seen from Figure 16, the testing accuracy show
a general upward trend as the training samples
increase. Among four entropy-based methods, EHSSE
achieves the best performance by obtaining the highest
accuracy for varying percentages of training data.

Conclusions

In the study, a novel complexity measure indicator
termed as EHSSE is proposed by incorporating SSE
and enhanced hierarchical analysis. The SSE is robust
to noise interference via introducing the SDF process.
Meanwhile, enhanced hierarchical analysis can extend
SSE to extract the fault information of both low and
high components from vibration signals. Two case
studies are conducted to demonstrate its advantage in
classifying various faults of rotating machinery. Results
show that the proposed strategy achieves the highest
recognition ratios with 99.88% and 99.58%, respec-
tively, which is much higher than the state-of-the-art
entropy technologies, including MSE, MPE, and MFE.
The main contributions of this article are summarized
as follows:

(1) SSE has merits of stability and strong robustness
to interference by introducing the SDF process.

(2) By incorporating SSE and enhanced hierarchical
analysis, EHSSE is proposed, which can extend
SSE to extract the fault information of both low
and high components from vibration signals.

(a) (b)

(c) (d)

(e) (f)

Figure 15. Feature visualization of case study II via t-SNE:
feature representations extracted by four entropy algorithms:
(a) EHSSE, (b) MSE, (c) MFE, (d) MPE, (e) MSSE, and (f) EHSE.
EHSSE: enhanced hierarchical symbolic sample entropy; MSSE: multiscale

symbolic sample entropy; EHSE: enhanced hierarchical sample entropy.

Figure 16. Performance of EHSSE, MSE, MFE, and MPE
methods under different number of training samples.
EHSSE: enhanced hierarchical symbolic sample entropy.
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(3) Two experiments are designed and results indicate
the EHSSE-based fault diagnosis method has
superior performance and obtains the excellent
recognition ratios than other entropy methods.

In this preliminary study, the combination of SDF
process, SE method and enhanced hierarchical analysis
algorithm, namely EHSSE has been verified to be a
promising solution for achieving pattern recognition
and fault diagnosis. In the future, efforts will be put to
assess the efficiency of EHSSE with variable working
conditions in a more realistic environment.
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