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Multiscale Symbolic Lempel–Ziv: An Effective
Feature Extraction Approach for Fault
Diagnosis of Railway Vehicle Systems

Yongbo Li , Fulong Liu, Shun Wang, and Jiancheng Yin

Abstract—In this article, a novel intelligent fault diag-
nosis method based on multiscale symbolic Lempel-Ziv
(MSLZ) is proposed to identify several faults of railway
vehicle systems (RVSs). The proposed MSLZ is essentially
for the purpose of estimating the irregularity of a given
time series. In the proposed MSLZ method, the symboliza-
tion and multiscale techniques are combined with Lempel–
Ziv (LZ) to enhance its feature extraction ability. First, the
symbolization can facilitate LZ to remove the noises and
reserve the fault information. Second, multiscale analysis
can extend LZ to multiple time scales, which can further
enhance the description ability of dynamic characteristics.
Using numerical data and experimental signals collected
from RVSs, the performance of the MSLZ method is demon-
strated to be sensitive to periodical impulses and robust to
environmental noise. Moreover, it has been demonstrated
that MSLZ has superiority in extracting fault information of
the RVS compared with LZ, symbolic LZ, and multiscale LZ
methods.

Index Terms—Fault diagnosis, impulse detection,
Lempel–Ziv (LZ), multiscale analysis, symbolic analysis.

I. INTRODUCTION

CONDITION monitoring (CM) of railway vehicles has
received much attention from both academic and industrial

researchers. Due to high service load, harsh operation condition,
or inevitable fatigue, a fault may occur on railway vehicle
systems (RVS). CM of RVSs can allow operators to take reme-
dial actions, reduce the economic loss, and avoid catastrophes
[1]–[7].

In the past few decades, there has been a rapid development
of vibration-based CM methods for RVSs. For instance, the

Manuscript received October 16, 2019; revised January 22, 2020 and
February 13, 2020; accepted March 5, 2020. Date of publication March
23, 2020; date of current version October 23, 2020. This work was
supported by the National Natural Science Foundation of China under
Grant 51805434. Paper no. TII-19-4649. (Corresponding author: Yongbo
Li.)

Yongbo Li and Shun Wang are with the MIIT Key Laboratory of
Dynamics and Control of Complex System, School of Aeronautics,
Northwestern Polytechnical University, Xi’an 710072, China (e-mail:
yongbo@nwpu.edu.cn; 18809183733@163.com).

Fulong Liu is with the Centre for Efficiency and Performance Engineer-
ing, University of Huddersfield, Huddersfield HD1 3DH, U.K. (e-mail:
u1553439@hud.ac.uk).

Jiancheng Yin is with the Department of Astronautical Science
and Mechanics, Harbin Institute of Technology, Harbin 150001, China
(e-mail: wdyydy@163.com).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TII.2020.2980923

short-time Fourier transform, Wigner–Ville transform, and
wavelet transform (WT) were all employed to detect the wheel
flat by analyzing vibrations of axle boxes [8]. Recently, an
adaptive multiscale morphology filter (AMMF) was applied for
wheel flat detection [9]. Results demonstrated that the AMMF
can extract fault characteristics from axle-box vibration signals
and diagnose wheel flat faults effectively. In addition, Kalman-
filter-based methods were also popular in CM of RVSs [10]–
[13]. Recently, a deep neural network has been constructed and
utilized to diagnose eight conditions of a bogie belonging to a
high-speed train [14].

However, most of these methods considered an RVS as a
linear system, which is untrue in reality as the vehicle sus-
pension systems are highly nonlinear. The measured vibration
signals of the RVS often represent nonlinear and nonstationary
characteristics due to the large dynamic force at the wheel–
rail interface generated by rail and wheel faults, such as rail
surface crack, corrugation, wheel flat [8], [15], and damping
fault [16]. Furthermore, the suspension fault features are easily
masked by environment noise and other interferences. Recently,
some nonlinear dynamic approaches methods, such as sample
entropy (SE) [17], permutation entropy (PE) [18], [19], and
fuzzy entropy (FE) [20], have been developed to extract the fault
information via estimating the complexity of time series [21],
[22]. However, these commonly used entropy-based methods
have their own disadvantages. SE and FE have low computation
efficiency when processing big data [18]. PE, though computa-
tionally efficient, only considers the amplitude information of
time series [23], [24].

Nowadays, increasing attentions have been paid on the appli-
cation of Lempel–Ziv (LZ) for fault feature extraction. LZ was
originally proposed by Lempel and Ziv, which is able to estimate
the complexity and effectively detect the dynamic change of
time series [25]. The main idea of LZ can be described into
two basic operations: copy and insert [26]. Yan and Gao [27]
applied LZ to extract bearing fault features. Hong and Liang [26]
combined continuous WT and LZ to accomplish the fault sever-
ity identification of a bearing. Empirical mode decomposition
and LZ were integrated for bearing fault identification by Dou
and Zhao [28], which proposed local mean decomposition and
LZ to recognize different bearing fault severities. LZ was also
combined with machine learning methods for pattern identifica-
tion. Xia et al. [29] introduced Hilbert vibration decomposition,
LZ, and support vector machine to identify different bearing
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faults. Cui et al. [30] combined LZ and the double-dictionary
matching pursuit to assess the fault severity of rolling bearings.
Sparsogram and LZ were also integrated to diagnose bearing
faults [31].

Although LZ shows remarkable effectiveness in the field
of fault diagnosis, it has two main shortcomings. First, LZ
converts the time series into 0–1 sequence using a predefined
threshold [31], which will undoubtedly discard the amplitude
and frequency information hidden in raw vibration signals.
Second, LZ is a single-scale analysis method, which is difficult to
estimate the complexity of a time series comprehensively [32].
To solve these drawbacks of the original LZ method, this ar-
ticle proposes a novel method, namely multiscale symbolic
Lempel–Ziv (MSLZ). First of all, LZ is combined with symbolic
dynamic and information theory [33], [34] to facilitate its ability
of noise cancellation and fault information reservation (called
symbolic Lempel–Ziv—SLZ). Then, we combine multiscale
analysis with SLZ to extract features over different multiple
scales [32], called MSLZ method, which can further enforce
the description ability of dynamic characteristics. After the fault
extraction using the MSLZ method, the multiclassifier extreme
learning machine (ELM) is applied to accomplish the fault
pattern identification [35]. The ELM is a supervised learning
linear classification algorithm with good generalization ability.
In addition, the ELM has a high computing efficiency, which is
simple and easy to be implemented [35].

In order to validate the effectiveness of the proposed method,
experiments were conducted on a one-fifth railway vehicle bogie
at the University of Huddersfield. Multiple suspension faults
were manually created in the experiments. It is worth noting
that RVSs are highly nonlinear systems. When the fault occurs
on RVSs, such as rail surface crack, corrugation, wheel flat [14],
[15], and damping fault [16], the measured vibration signals of
RVSs contain strong environment noises due to the long transfer
path. Meanwhile, the vibration signals of RVSs generally show
great variations in multiple observation scales. The multiscale
characteristics (such as multiple time and frequency scales) are
inherent in the measured vibration signals of RVSs. Since the
original LZ method is a single-scale analysis approach with of
the 0–1 encoding strategy, it is ineffective to extract the fault
characteristics of RVSs. In our proposed MSLZ method, the
symbolization and multiscale techniques are combined with
LZ to enhance its feature extraction ability. Simulation and
experimental results demonstrated that the proposed MSLZ
outperforms LZ [25], SLZ, multiscale Lempel–Ziv (MLZ), and
multiscale sample entropy (MSE) [32] in fault diagnosis of the
RVS. In summary, we have three main contributions in this
article.

1) The symbolization for noise cancellation is proposed for
LZ to enhance its denoising ability.

2) The multiscale analysis is used to extend LZ to multiple
time scales.

3) The proposed method yields the best fault diagnosis abil-
ity by comparing with MLZ-ELM, SLZ-ELM, LZ-ELM,
and MSE-ELM methods.

The remainder of this article is organized as follows. Section II
describes detailed steps of the proposed MSLZ method and

Fig. 1. Illustration of the shortcoming of the LZ method.

illustrates the superiority of MSLZ via numerical simulations.
Section III gives detailed procedures of the MSLZ and ELM
methods. Section IV introduces the test rig and validates its
effectiveness via fault diagnosis of the RVS. Finally, Section V
concludes this article.

II. MULTISCALE SYMBOLIC LEMPEL–ZIV

A. Shortcomings of Lempel–Ziv

The LZ method transforms the time series into a sequence of
0 and 1 [25]. However, the operation of an RVS may generate
complicated dynamic responses due to various contacting modes
between wheels and rails. The first shortcoming is that the usage
of 0–1 encoding of the LZ method cannot effectively describe
the amplitude and frequency information hidden in raw vibration
signals [8].

For better understanding, three different vectors X1 =
{x11, x12, x13},X2 = {x21, x22, x23}, andX3 = {x31, x32, x33}
are selected for illustration, as shown in Fig. 1. By using the
traditional LZ method with a preset threshold, as denoted in
green line, the above three vectors have the same symbol time
series {0, 1, 1}. It can be found that the information about
the amplitude difference is discarded. Meanwhile, the usage
of 0–1 encoding of the LZ method can only reserve the main
frequency-domain characteristics; some frequency distribution
characteristics related to the fault information may be discarded
in raw vibration signals. A fault-bearing model reported in [36]
is employed to illustrate the loss of frequency distribution char-
acteristics. The mathematical expression of this bearing model
is given as⎧⎪⎨

⎪⎩
x(t) =

∑M
i=1 Ais(t− iT − τi) + w(t)

Ai = A0 cos(2πQt+ φA) + CA

s(t) = e−Bt sin(2πfnt+ φw)

(1)

whereAi is the amplitude modulation (AM) signal with a period
time 1/Q, A0 is the amplitude of the signal, CA is a constant
with restrictionCA > A0, s(t) is the discrete oscillating impulse
signal with an interval time T between two adjacent impacts, B
is the damping coefficient, fn is the natural frequency of the
system, τi is the time lag derived from the random slip of rolling
elements, and w(t) is the white Gaussian noise.

The time-domain waveforms of the simulated signal and its
corresponding frequency spectrum are displayed in Fig. 2(a)
and (b), respectively. From Fig. 2(b), the intrinsic frequency
and its sidebands can be clearly observed. Note that the fault
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Fig. 2. (a) Waveforms of the original vibration signal in (1). (b) FFT
spectrum of the raw signal. (c) Original vibration signal with additional
noises. (d) FFT spectrum of the noisy signal. (e) FFT spectrum using
the 0–1 encoding method. (f) FFT spectrum using the symbolization
process.

frequency is equal to the sideband interval frequency. First,
we convert the time series into 0–1 sequence and conduct
fast Fourier transform (FFT) analysis. The obtained frequency
spectrum is shown in Fig. 2(c). As can be seen, the sidebands
of intrinsic frequency in the raw signal are discarded using 0–1
encoding of the LZ method. The time-domain waveforms of the
simulated signal and its corresponding frequency spectrum are
displayed in Fig. 2(a) and (b), respectively. From Fig. 2(b), the
intrinsic frequency and its sidebands can be clearly observed.
Note that the fault frequency is equal to the sideband interval
frequency. First, we add the additional noise with SNR=−18 dB
on the raw signal and conduct FFT analysis. The time-domain
waveforms of the noisy signal and its corresponding frequency
spectrum are plotted in Fig. 2(c) and (d), respectively. As can
be seen from Fig. 2(d), the sidebands of intrinsic frequency are
heavily masked by the background noise, and only first harmonic
of modulation frequency can be detected. This is because the
energy of the periodic impacts is very low, which is buried in
interference noise, leading to the spectrum line disappearing.
Second, we convert the time series into 0–1 sequence and con-
duct FFT analysis. The obtained frequency spectrum is shown
in Fig. 2(e). As can be seen, the sidebands of intrinsic frequency
in the raw signal are discarded using 0–1 encoding of the LZ
method.

Second, direct application of the LZ method may generate an
unreliable result using a single scale to quantify the complexity
of time series [37]. As known that the measured vibration signal
from the RVS consists of multiple temporal scale structures, the
feature extraction ability of the traditional LZ method will be
largely weakened when processing such complicated vibration
signals [38].

B. Multiscale Symbolic Lempel–Ziv

The key point for fault diagnosis of the RVS is to extract the
fault characteristic [6], [12]. LZ is able to estimate the com-
plexity and effectively detect the dynamic change of time series.
However, LZ converts the time series into 0–1 sequence [31],

which will undoubtedly discard the amplitude and frequency
information. To overcome this shortcoming, we combine the
symbolization process with LZ (called SLZ) to facilitate its
ability of noise cancellation and fault information reservation.
However, the multiscale characteristics (such as multiple time
and frequency scales) are inherent in the measured vibration
signals of the RVS. Direct application of SLZ will undoubtedly
omit the fault information inherent in the raw vibration signal.
There is a need to take multiscale information into considera-
tion. Therefore, the MSLZ method is proposed by combining
symbolization and multiscale analysis to facilitate its ability of
feature extraction. In this article, we also demonstrate that the
proposed MSLZ method outperforms SLZ and MLZ alone using
both synthetic and experimental signals. Detailed explanations
are given as follows.

1) SLZ Method: For a given time series X{x(k), k =
1, 2, . . . , N}, five steps are required in the proposed SLZ method
as follows.

1) Convert the obtained coarse-grained time series X =
{x1, x2, . . . , xn} into symbolic time series. For ε sym-
bols, we can obtain a symbolic time series S =
{s1, s2, . . . , sε} after symbolization. In this article, the
maximum entropy partitioning [21], [39] is applied to
accomplish the symbolization due to its adaptive seg-
mentation. Fig. 1 gives insights into the advantage of
symbolization. Here, we set the symbol number ε = 3 as
denoted by the red line in Fig. 1. The obtained vectors will
generate different patterns {S1, S2, S2}, {S1, S2, S3}, and
{S1, S3, S3} using the symbolic dynamic process. In or-
der to show the advantage of symbolization, Fig. 2(f)
shows the FFT spectrum using the symbolization process.
We find that the first and second harmonics of modulation
frequency are well reserved with less interference fre-
quencies. This phenomenon shows that the symbolization
can facilitate LZ to remove the background noise and
reserve the fault information.

2) Initialize Sv,0 = {}, Q0 = {}, CN = 0, and r = 1. Let
Qr = (Qr−1sr) and determine whether Qr belongs to
Sv,r−1 = {Sv,r−2sr−1}.

3) If Qr belongs to Sv,r−1 = {Sv,r−2sr−1}, set CN (r) =
CN (r − 1). Then, go to step 2 with r = r + 1. Else, set
Qr = {} and CN (r) = CN (r − 1) + 1. Then, go to step
2 with r = r + 1.

4) Repeat steps 2 and 3 until the whole symbol time series
S = {s1, s2, . . . , sε} is covered.

5) Normalize the LZ complexity as follows:

0 ≤ CnN =
CN (N)

CUL
≤ 1 (2)

where CUL = limN→∞ CN (N) = limN→∞ N
(1−β)logkN

≈ N
logkN

and k is the number of symbols.
For clarity, a flowchart of the SLZ method is given in Fig. 6.
In order to validate the superiority of the SLZ method in the

detection of dynamical change of time series, a widely used
dynamical system, i.e., logistic map [40]–[42], is investigated.
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Fig. 3. Logistic map and its LZ and SLZ complexity evaluation values
with control parameter r. (a) Logistic map. (b) LZ method of the logistic
map. (c) SLZ method of the logistic map.

The definition of logistic map is expressed as follows:

xi+1 = r × xi × (1 − xi), x1 = 0.65 (3)

where r is the control parameter with 3.5 ≤ r ≤ 4.
Fig. 3(a) displays the logistic map. It is shown that the chaotic

dynamic behavior occurs in the range of 3.573 ≤ r ≤ 4. The
results of LZ and SLZ in describing logistic map are displayed
in Fig. 3(b) and (c), respectively. It can be found that when the
chaotic dynamic behavior occurs in the range of 3.573 ≤ r ≤ 4,
SLZ can detect the dynamic change accurately. Moreover, the
behavior of SLZ matches well with the positive Lyapunov ex-
ponents. However, the traditional LZ method is unchanged with
zero from 3.5 ≤ r ≤ 3.68. Moreover, the SLZ method is also
sensitive to some small complexity fluctuations. For example,
the time series of the logic map bifurcates from one status
(period: −4) into another status (period: −8), when r = 3.53,
we can find that the SLZ value increases correspondingly. The
comparison results have demonstrated that the SLZ method has
certain superiority in detecting the dynamic change of logic map
compared with the original LZ method

X(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1.8 × e
1.2

2048 ×t × sin
(

100
2048 × t

)
, 0 < t < 400

1.8 × e
1.2

2048 ×t × sin
(

100
2048 × t

)
+ 0.12 × sin

(
800
401 × t

)
, 400 ≤ t ≤ 800

1.8 × e
1.2

2048 ×t × sin
(

100
2048 × t

)
, 800 < t < 2048

.

(4)

To illustrate the advantage of the symbolization process in
noise cancellation and information reservation, an AM signal
with different frequency fluctuation is simulated to compare
the performance of SLZ and traditional LZ. The expression
of the AM signal is provided in (4). The time domain of the
simulated signal is displayed in Fig. 4(b). Here, we set ε= 6,
and the final obtained results using SLZ and LZ methods are
shown in Fig. 4(a). As can be seen, the obtained values change
along with the increase of amplitude and frequency. However,

Fig. 4. Dynamic change tracking results using proposed SLZ and LZ
methods. (a) SLZ and LZ values. (b) Time domains of the AM signal.
(c) 0–1 coded using the LZ method and symbolization using the pro-
posed SLZ method.

Fig. 5. Scheme illustrating the coarse-graining with τ = 2 and τ = 3.

the traditional LZ method keeps an approximately constant
value. The comparison analysis results further demonstrate the
superiority of the SLZ method in feature extraction.

To demonstrate better performance of SLZ in quantifying
the complexity, we provide the coding results of SLZ and LZ
methods, as shown in Fig. 4(c). As can be seen from Fig. 4(c),
the SLZ method works well in tracking the dynamic change of
simulated signals using the proposed encoding strategy. On the
contrary, the 0–1 encoding form of the traditional LZ method is
not effective in detecting the dynamic change, which is almost
unchanged in the whole time series.

2) MSLZ Method: Vibration signals generally show great
variations in multiple observation scales; thereby, it is necessary
to take multiscale information into consideration [43]. It is well
known that the low-frequency periodical impulses will be gen-
erated and modulated with the high-frequency component when
the localized damage occurs. SLZ with single-scale analysis
will undoubtedly omit the fault information inherent in the raw
vibration signal.

To better extract the multiscale fault characteristics, the mul-
tiscale analysis proposed by Costa et al. [37] is combined with
SLZ to assess the dynamical characteristics of time series over
multiple scales. Fig. 5 illustrates the coarse-grained procedure.
With the merits of multiscale analysis, MSLZ is able to perform
the multiscale feature extraction. In summary, two steps are
involved in the proposed MSLZ method as follows.
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1) For a given time series X{x(k), k = 1, 2, . . . , N}, it can
be divided into several coarse-grained time series {ysj}
(s is a positive integer) in the form of (5). It can be
found that the scale factor specifies the number of data
points averaged to obtain each element of the coarse-
grained time series. Therefore, the coarse-grained process
is actually the averaging process, which can obtain the
low-frequency components of the original time series. In
other words, multiscale analysis can assess the dynamical
characteristics of time series over different frequency
bands. For τ = 1, the time series {y(1)} is the original
time series with single-scale analysis

ysj =
1
τ

jτ∑
i=(j−1)τ+1

xi, 1 ≤ j ≤
⌈
N

τ

⌉
. (5)

2) Calculate the SLZ value of each coarse-grained time
series {yτj } using steps 1–5 referred in the SLZ method,
which can be expressed as follows:

MSLZ(x, d, n, τ) = SLZ(yτj , d, n). (6)

Fig. 6 illustrates the calculation process of MSLZ. Mean-
while, the MATLAB code of the MSLZ is provided in Appendix
A for convenient application and validation.

C. MSLZ Performance Verification Using
Synthetic Signal

To validate the advantage of the proposed MSLZ algorithm,
a bearing fault model in [44] is applied to simulate the rolling
bearing with inner race fault, outer race fault, and rolling element
fault. The bearing model considers the effects of bearing geom-
etry, shaft speed, the load, decaying exponential, and so on [44].
The mathematical model aims to generate three different types
of periodical impulses as follows:

X(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[∑+∞
k=−∞ doδ(t− kTo)

] ∗ e(t), 0.3 < t < 0.5{(∑+∞
k=−∞(diδ(t− kTi)

)
· q(2πfrt) · p(2πfrt)} ∗ e(t),

0.8 ≤ t ≤ 1.0
(∑+∞

k=−∞(dboδ(t− kTb)

+ dbiδ(t− kTb − 1
2Tb))

)
· q(2πfrt) · p(2πfrt) ∗ e(t),

1.3 < t < 1.5

(7)

where do, do = i, dbo, and dbi are the amplitudes of impact
produced by the defects on outer race, defects on inner race,
defects on rolling elements striking the outer race, and defects on
rolling element striking the inner race, respectively. To, Ti, and
Tb are the reciprocal values of fault characteristics of outer race,
inner race, and rolling elements, respectively. q(ϕ) is the radial
load distribution of rolling element, fr is the rotating frequency,
e(t) is the damping function, δ(t) is the impulse function, and
k is the number of impulses.

The parameters are given as follows: the amplitudes of impact
produced by the defects do, do = i, dbo, and dbi are all set as 4,
the rotating frequency fr is 50 Hz, the reciprocal value of fault
frequency of outer race To is 0.0049, the reciprocal value of

Fig. 6. Framework of the proposed MSLZ method.

fault frequency of inner race Ti is 0.0034, the reciprocal value of
fault frequency of rolling element Tb is 0.0038 Hz, the sampling
frequency fs = 20 480 Hz, and the number of impulses k = 11.
In addition, the white Gaussian noise SNR =−2 dB is added to
simulate the noisy environment. The time-domain waveform of
the simulated signal is displayed in Fig. 7(b).

A comprehensive comparison analysis is conducted between
the LZ, MLZ, SLZ, and MSLZ methods. Note that we combine
multiscale analysis with the traditional LZ method (called MLZ)
for comparison. The synthetic signals are 128 s with a sampling
frequency of 256 Hz. A sliding window of 7 s is applied to cut out
the data with a step length of 2 s, which means a sliding window
data with 75% overlap moving along the signal. Here, we set the
symbolization number ε = 3 for MSLZ and SLZ methods and
the scale τ = 10 for MLZ and MSLZ methods.

It is worth noting that we apply four methods to calculate
the Euclidean distance (ED) value between the first ten samples
(taken as normal condition) and each of other samples to evaluate
their performance of fault detection. The obtained results are
shown in Fig. 7(a). As seen from Fig. 7(a), we can observe that
the LZ, SLZ, MLZ, and MSLZ methods are all able to detect the
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Fig. 7. Performance comparison results of LZ, SLZ, MLZ, and MSLZ
methods. (a) ED values of LZ, SLZ, MLZ, and MSLZ. (b) Simulated
signal.

impulses derived from different bearing fault types. However,
the proposed MSLZ generates the largest ED value around the
three impulses. The fault detection performance of four methods
is listed as MSLZ>SLZ>MLZ>LZ. The comparison results
indicate that the proposed MSLZ method can greatly enhance
the impulse detecting ability. Furthermore, the MSLZ method
can even clearly differentiate three bearing fault types.

III. PROCEDURE OF MSLZ-BASED FAULT DIAGNOSIS

A fault diagnosis scheme is designed to conduct CM of the
RVS using the proposed MSLZ and ELM classifier. Five steps
are summarized as follows.

1) Collect vibration signals of the RVS using a data acqui-
sition (DAQ) system and segregate the whole data into
several samples.

2) Divide the initial samples into training samples and test-
ing samples.

3) Apply the MSLZ method to extract the fault characteris-
tics from the samples. It is worthy to note that the parame-
ters of MSLZ are set as follows: ε = 3 and τ = 10 in the
following case study. Then, SLZ values over ten scales
can be obtained for constructing initial fault features.

4) Utilize the training samples to build the classification
model based on the ELM classifier.

5) Feed the testing samples into the well-trained classifica-
tion model to automatically classify the several fault types
of the RVS.

IV. EXPERIMENT VALIDATION

In this section, the proposed MSLZ method is validated
using an experiment on a one-fifth scaled bogie of railway
vehicles [8], [15], [16]. We first describe the test rig, and then, the
detailed experimental data description is introduced. Finally, the

Fig. 8. (a) One-fifth scaled roller test rig [14]. (b) Schematic of the roller
rig.

performance comparison and analysis between LZ, SLZ, MLZ,
MSE, and the proposed MSLZ methods is presented.

A. Experimental Setup

A one-fifth scaled bogie at the University of Huddersfield was
utilized to collect the data, as shown in Fig. 8(a). The scaled bogie
is popular in railway vehicle dynamic analysis, since it has two
main advantages: 1) the scaled bogie can realistically simulate
the dynamic behavior of a full-size railway vehicle bogie without
losing generality under various operation conditions due to its
flexible design and 2) the scaled bogie is easy to be controlled
with the small occupation of land. The designed roller rig has two
rollers, which is driven by an ac motor. The rubber belt is utilized
to connect the ac motor and the shaft using two belt pulleys, as
shown in Fig. 8(b). In this experiment, eight mount bushings
are designed as the primary suspension to connect the bogie
frame and the wheelsets. Meanwhile, the rotational speed of this
experiment can be controlled by a speed controller unit and the
speed is set with 1000 r/min. In our experiments, the wheel and
roller surface is unlubricated; thereby, the coefficient of friction
is constant. Besides, the data were collected when the speed
of the roller arrived at a low stable speed. Therefore, the slip
ratio between wheel and rail should be small. On account of this
reason, the effect of friction slip is not considered following [5]
and [11], in which the fault diagnosis of wheel and roller is
conducted using the same test rig in Fig. 8.

The DAQ system includes two acceleration sensors and a
DAQ card, as shown in Fig. 8(b). In this experiment, the data
from transducer #2 are selected as the main data source due to
its direct detection of the fault-induced impulses. The sampling
frequency is 24 kHz, and 720 samples were collected. The
designed test rig can simulate various common faults occurred
on the bogie, such as damping fault, wheel surface fault (WSF),
roller surface fault, and compound fault.
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Fig. 9. (a) Suspension with a small damping fault. (b) Suspension with
a medium damping fault. (c) Wheel surface fault. (d) Combination of the
wheel fault and the roller fault.

To simulate the fatigue of the suspension components, we
replace both two normal stud mounts with two softer ones, since
the damper stiffness will decrease before the fatigue failure.
Besides, two harder stud mounts were also employed to simulate
the aging of the primary suspension. In the first case, we aim
to recognize the mount bushings with different stiffness and
damping ratio severity: harder, normal, and softer. The suspen-
sion with harder and softer dampers is displayed in Fig. 9(a)
and (b), respectively. The second suspension fault case was fault
injection on the wheel surface and roller surface, as shown in
Fig. 9(c) and (d), respectively.

It is well known that a softer vehicle suspension can lead
to a smoother driving due to the vehicle response is smaller.
This phenomenon is same in the scaled roller rig experiment,
which will have smaller response with a softer stud mount. In
addition, the WSF and the roller fault will result in impulse
response. However, the impulse signal signature will become
undistinguishable when the suspension (stud mount) becomes
soft. Above all, the stiffness reduction of the suspension system
will lead to less shock and vibration but will increase the dif-
ficulty of diagnosing WSF and roller fault. In this article, the
harder stud mount is denoted as small damping fault and the
softer case is denoted as medium fault.

B. Experimental Data Description

In this case study, seven faults of a bogie are tested, including
suspension with a small damping fault (SSDF), suspension with
a medium damping fault (SMDF), the WSF, combination of the
wheel fault and the small damping fault (WFDF), combination
of the wheel surface fault and the roller fault (WFRF), and
combination of the wheel surface fault, the roller fault, and
the damping fault (WFRFDF). The above faults are tested on
wheelset #1, as marked in red circle in Fig. 8(b). In this article,
six suspension, wheel, and roller faults and normal conditions are
all considered for validation. Note that the damage on roller aims
to simulate the to the rail fault. There are two main advantages
of conducting the fault diagnosis of wheel and rail faults. First,
many research studies still focus on the fault diagnosis of wheel
and rail faults [5], [6], [11], [15]. Conducting the research
on wheel and rail failure in laboratory environment could be
beneficial in preventing such severe failures occurring. Second,
the study that covers six failures will be more comprehensive
than the one only including damping fault [16].

For each health condition, the collected data are divided into
several nonoverlapping samples. Each sample contains 4096
data points. Each health condition has 100 samples, and there are

Fig. 10. Vibration acceleration signals of each suspension: (a) normal,
(b) SSDF, (c) SFDF, (d) WSF, (e) WFDF, (f) WFRF, and (g) WFRFDF.

total 700 samples. The time-domain waveforms of suspension
with seven different health conditions are shown in Fig. 10. As
can be seen, the measured vibration signal of the RVS represents
the nonlinear characteristics, which is masked by measurement
noise and other interferences. For this reason, it is necessary
to extract fault features from the vibration signals using the
proposed MSLZ method.

For data subset, 350 samples are randomly selected from the
whole data to train the ELM classifier, and the remaining samples
are taken as testing data. Following the steps in Section III, the
MSLZ is employed to calculate the features with ten scales.
Then, the obtained MSLZ values are fed into the multiclassifier
ELM for pattern recognition.

To demonstrate the superiority of the proposed method, ELM
using SLZ (simplified into SLZ-ELM), ELM using LZ (sim-
plified into LZ-ELM), and ELM using popular entropy method
MSE (simplified into MSE-ELM) are all employed to conduct
the fault diagnosis of the RVS.

C. Performance Comparison and Analysis

1) Comparison of Diagnosis Results: In order to reduce the
impact of randomness, we perform 20 runs for each method, and
the obtained classification accuracies are shown in Fig. 11 and
Table I, respectively. As can be seen, four conclusions can be
drawn as follows. First, the proposed method obtains the highest
mean classification accuracy (97.5–100%) with 98.90%. This
contributes to the superior ability of the proposed MSLZ method
in the feature extraction. Second, the MLZ-ELM method has
the second highest mean accuracy (90–94.00%) with 91.31%,
which is lower than that of the proposed MSLZ method. More-
over, the LZ-ELM method has the least classification accuracy
(66–72.00%) with 67.74%, which is lower than SLZ-ELM
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TABLE I
DIAGNOSIS RESULTS OF THE FOUR METHODS

Fig. 11. Classification accuracy of the four methods for 20 runs.

(73–79.00%) with 75.64%. This reinforces the superiority of
symbolization process in noise canceling. Third, the classi-
fication accuracy of SLZ-ELM is lower than the proposed
MSLZ-ELM method, which validates the advantage of multi-
scale analysis in assessing the dynamical characteristics. Last,
our proposed method has a higher accuracy compared with the
MSE-ELM method (87–92.00%) with 89.16%. This illustrates
that the proposed MSLZ method has a better feature extraction
ability.

Fig. 12 shows the confusion matrix of the MSLZ-ELM, SLZ-
ELM, MLZ-ELM, and MSE-ELM methods. It can be observed
that the proposed MSLZ-ELM method has the highest testing
accuracy with two testing samples misclassified into wrong
samples. This validates that the proposed MSLZ-ELM method
is effective in extracting fault characteristics from the RVS.

2) Discussions on the Effects of Symbols and Scales: The
performance of the proposed MSLZ method can be influenced
by the number of symbols and scales. To estimate the effects of
scales and the number of symbols on the MSLZ in classification
performance, different symbols ranging from one to nine are
considered. The obtained results are displayed in Fig. 13. It can
be clearly observed that the proposed MSLZ with symbol ε = 3
outperforms MSLZ with other number of symbols. In general,
as more symbols are incorporated, the antinoise ability of MSLZ
can be reduced, while less symbols will result in the fact that
MSLZ cannot extract enough fault information.

To quantify the performance of scale in feature extraction, the
MSLZ with scales ranging from nine to twelve are also studied.

Fig. 12. Confusion matrix of MSLZ-ELM, SLZ-ELM, MLZ-ELM, and
MSE-ELM methods.

Fig. 13. Diagnosis performance using the proposed MSLZ with differ-
ent symbols and scales.

Note that when scale τ = 1, the MSLZ degenerates into SLZ. As
seen in Fig. 13, it can be found that the MSLZ with scale τ = 10
has the highest classification accuracy. Because a smaller scale
number will eliminate the performance in feature extraction,
while a larger scale will result in dimension disaster and enhance
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Fig. 14. Two-dimensional visualization using three methods: (a) pro-
posed MSLZ method, (b) MLZ method, and (c) MSE method.

TABLE II
INTRACLASS DISTANCE AND AVERAGE INTERCLASS DISTANCE USING

PROPOSED MSLZ, MLZ, AND MSE METHODS

the CPU time. Therefore, the comparison results demonstrate
that MSLZ with τ = 10 and can learn more discriminative and
robust features from different scales of raw vibration signals and
generate a higher classification accuracy.

3) Empirical Analysis: To illustrate the superiority of the
proposed MSLZ in the feature extraction, two-dimensional visu-
alization of MSLZ, MLZ, and MSE via the principal component
analysis method under different health conditions is depicted in
Fig. 14. As seen in Fig. 14(a), we can observe that when using
the MSLZ method, the obtained samples in the same class are
much closer than the MLZ and MSE methods. Moreover, the
samples between different classes are easier to be separated.
Compared with the MSLZ method, the features obtained using
MLZ and MSE methods are distributed without a nice cluster.
This phenomenon indicates that MSLZ can extract more dis-
criminating and stable features compared with MLZ and MSE
methods. In addition, we use the ED to calculate the intraclass
distance and average interclass distance in Fig. 14. The obtained
results are listed in Table II. It can be observed from Table II that
the proposed MSLZ method has a smaller intraclass distance
than MLZ and MSE, which means that the feature obtained
using MSLZ has a stronger capability of maintaining the local
information. Meanwhile, the MSLZ method has the largest
interclass distance, which indicates that the feature has a stronger
discriminant ability.

For comparison, four recently published methods, con-
volutional neural network (CNN) [45], deep belief net-
work (DBN) [46], symbolic aggregate approximation and
Lempel–Ziv (SAX-LZ) [47], and sparsogram and Lempel–Ziv
(SPLZ) [31], are all applied to analyze the same vibration signal.
We use the classification accuracy to evaluate the performance of
the five methods. For fair comparison, 50% of the original data
were randomly selected as the training dataset, and the remaining
is taken as the testing dataset. To reduce the effect of randomness,
20 trials were conducted for each method. The averaging training
and testing accuracies are calculated, and their corresponding
standard deviations are represented using the positive error bars.

Fig. 15. Diagnosis results of the six trails using five methods.

TABLE III
PERFORMANCE COMPARISON OF FOUR ALGORITHMS BASED ON

RVS DATASETS

The results are shown in Fig. 15. Meanwhile, Table III shows the
classification accuracy of each method using the RVS datasets.
It can be observed from Fig. 15 and Table III that the proposed
MSLZ method has the highest testing accuracy with 98.90%.The
accuracies of deep learning algorithms exceed 90%. The CNN
and the DBN have second and third highest testing accuracy,
respectively. The SPLZ method has the lowest testing accuracy
with 87.64%. It can be concluded that the proposed MSLZ
method performs best in extracting the hidden fault information
compared with other four methods.

V. CONCLUSION

In this article, a new fault identification method based on
MSLZ was developed. The major contribution of MSLZ was
the incorporation of the symbolization process and multiscale
analysis into the traditional LZ. The proposed MSLZ method
can enhance the denoising ability through the symbolization
process and further estimate the complexity of time series over
a series of scales. Therefore, the MSLZ method can extract
rich fault information from vibration signals and enhance the
fault identification performance. Synthetic and experimental
results demonstrated that MSLZ-based method achieved much
better performance than SLZ, LZ MLZ, and MSE in diagnosing
various faults of the RVS. Moreover, the proposed method brings
new vitality for the traditional LZ method and can be easily
extended to deal with different machines and industrial systems.

The proposed MSLZ method was tested and demonstrated
to be effective for the RVS. However, the effectiveness of the
proposed method for other rotating machinery was unknown.
Further tests using other machines will be considered in our
future work. Meanwhile, the effect of the friction slip between
two surfaces was not considered. Further tests considering the
slip will also be conducted in our future work.
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