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A B S T R A C T

Lempel–Ziv complexity (LZC), as a nonlinear feature in information science, has shown great promise in
detecting correlations and capturing dynamic changes in single-channel time series. However, its application
to multichannel data has been largely unexplored, while the complexity of real-world systems demands
the utilization of data collected from multiple sensors or channels so as to extract distinguishable fault
features for fault diagnosis. This paper proposes a novel method called multivariate multiscale dispersion
Lempel–Ziv complexity (mvMDLZC) to extract the fault features hidden in multi-source information. First,
multivariate embedding theory is applied to obtain multivariate embedded vectors and multivariate dispersion
patterns, which can reflect the inherent relationships in the multichannel series. Second, by assigning labels
to these patterns, the original multichannel time series can be transformed into a symbolic sequence with
multiple symbols instead of the original binary conversion, enabling the accurate recovery of the system
dynamics. Finally, the complexity counter value and normalized LZC are calculated for the complexity measure.
Experimental results using synthetic and real-world datasets demonstrate that mvMDLZC outperforms existing
LZC-based methods and multivariate dispersion entropy in recognizing different states of mechanical systems.
Additionally, mvMDLZC exhibits robustness in handling challenges such as small sample datasets and noise
interference, making it suitable for real industrial applications. These findings highlight the potential of
mvMDLZC as a valuable approach for dissecting multichannel systems across various real-world scenarios.
. Introduction

Rotating machinery plays a critical role in various industries, such
s transportation, power generation, aerospace, and automotive. How-
ver, the harsh operating environments and continuous usage make
otating machinery susceptible to failures and faults, which can lead
o high maintenance costs and, in severe cases, accidents [1–3]. To ad-
ress these challenges, the field of condition monitoring and fault diag-
osis for rotating machinery has witnessed significant advancements [4,
].

In recent years, entropy and complexity measures have emerged
s useful approaches in this domain [6–10]. These measures provide
aluable insights into the dynamic behavior and health condition of
otating machinery. When faults or damages occur, they often manifest
s changes in the amplitude and frequency modulation of signals. These
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changes introduce variations and complexities in the measured data.
By leveraging entropy and complexity measures, it becomes possible to
capture and analyze these dynamic changes [11,12].

Entropy-based metrics have gained significant attention since Shan-
non introduced the concept of entropy in 1948 [13]. Entropy provides
a measure of the complexity or uncertainty of time series data, with
higher entropy values indicating more complex signals. This makes
entropy-based metrics effective for analyzing nonlinear and irregu-
lar signals. Over the years, researchers have developed various en-
tropy methods [11], including Rényi entropy, conditional entropy,
Kolmogorov–Sinai entropy, Eckmann–Ruelle entropy, approximate en-
tropy, sample entropy, permutation entropy, fuzzy entropy, distribution
entropy, dispersion entropy, diversity entropy [14] and so on [15–18].
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Nomenclature

LZC Lempel–Ziv complexity
mvDE Multivariate dispersion entropy
mvDLZC Multivariate dispersion Lempel–Ziv com-

plexity
mvLZC Multivariate Lempel–Ziv complexity
mvMDE Multivariate multiscale dispersion entropy
mvMDLZC Multivariate multiscale dispersion Lempel–

Ziv complexity
mvMLZC Multivariate multiscale Lempel–Ziv com-

plexity
SD Standard deviation
SNR Signal-to-noise ratio
WGN White Gaussian noise

Additionally, based on coarse-graining analysis [19], multiscale-based
entropy methods have been developed for comprehensive complexity
evaluation of time series under the different time scales [20–24].

In parallel to the concept of entropy, Lempel–Ziv complexity (LZC)
has also gained popularity as a feature extraction technique due to
its simplicity [25]. LZC is specifically designed to be parameter-free,
eliminating the need for manual tuning and parameter optimization.
This characteristic allows for a more streamlined and efficient applica-
tion of LZC in various data analysis tasks. LZC quantifies the number
of new patterns encountered in a time series, providing insights into
its complexity [26]. It has found applications in various domains,
including fault detection [27–30], biomedical signal processing [31–
33], chaos analysis [34], and others [35]. A higher LZC value indicates
the presence of more patterns in the time series, indicating greater
complexity. LZC offers the advantage of being computationally straight-
forward and not requiring parameter settings. However, the process
of converting the original signal into a 0–1 sequence for computation
purposes results in a loss of time series information [35,36].

To address the limitations of LZC-based methods and to leverage
the benefits of entropy analysis, researchers have attempted to com-
bine some concepts from entropy measures with LZC. These efforts
have led to the development of LZC approaches that aim to accu-
rately assess the complexity of time-series and capture information
content. For instance, Bai et al. introduced permutation entropy (PE)
into LZC and proposed permutation LZC (PLZC) [31]. By replacing
the binary mapping of LZC with permutation patterns from PE, PLZC
demonstrated improved anti-interference ability and exhibited promis-
ing performance in detecting and analyzing EEG signals. In the field
of fault diagnosis for railway vehicle systems, Li et al. combined the
maximum entropy partitioning (MEP) with LZC [36]. This approach
leveraged the synergies between MEP symbolization and LZC, leading
to effective fault diagnosis outcomes. Mao et al. adopted the normal
cumulative distribution function (NCDF) from dispersion entropy to
replace the binary mapping of LZC [34]. This modification aimed to
enhance the robustness of LZC against noise interference. Building upon
this, Li et al. further improved the approach by integrating dispersion
pattern and fluctuation-based dispersion pattern with LZC [8–10]. The
results demonstrated the effectiveness of these methods in detecting
dynamic changes in time series data.

Additionally, researchers have explored multiscale-based LZC meth-
ods [37,38] and hierarchical-based LZC methods [39,40] to capture
complex patterns at different scales and hierarchical levels, respec-
tively. These approaches provide more comprehensive insights into the
complexity of time series data. These advancements in incorporating
entropy measures, multiscale analysis, and hierarchical analysis into
2

LZC have expanded its applicability and improved its performance in
various domains, showcasing the continuous efforts to enhance the
capabilities of LZC-based methods.

The LZC-based methods mentioned above are primarily designed for
analyzing univariate time series. However, because of the complexity
of the targets or systems, the data collected from a single sensor is
not enough in decision-making process [41]. In contrast, multivariate
signals obtained from multiple sensors or channels contain valuable
information that can significantly enhance our understanding of the
state of dynamical systems [42]. By considering the interactions and
relationships among different channels, we can more effectively detect
dynamic changes and achieve accurate fault diagnosis [43,44].

Although a multivariate LZC method (mvLZC) and its multiscale
version (mvMLZC) have been proposed in the literature [45], they
have limitations. These methods only average the complexity val-
ues of all channels, neglecting the inherent relationships in the data.
Furthermore, their use of binary encoding fails to account for the
underlying signal dynamics, potentially leading to inaccurate system
representation.

To address these limitations, we propose a novel approach called
multivariate dispersion Lempel–Ziv complexity (mvDLZC), inspired by
a recent study [46]. The proposed mvDLZC extends the Lempel–Ziv
complexity to the multivariate domain by incorporating the concept of
multivariate dispersion pattern [46]. The construction of multivariate
dispersion patterns involves applying multivariate embedding theory
to obtain multivariate embedded vectors and multivariate dispersion
patterns, which can reflect the inherent relationships in the multichan-
nel series [47]. Additionally, by assigning labels to these patterns, the
original multivariate time series can be transformed into a symbolic
sequence with multiple symbols, enabling the accurate recovery of
the system dynamics. Moreover, we extend mvDLZC to the multi-
scale space, termed as multivariate multiscale dispersion Lempel–Ziv
complexity (mvMDLZC), to capture comprehensive feature information.

To validate the effectiveness of the proposed mvDLZC and
mvMDLZC methods, we conduct systematic comparative studies using
both synthetic and real-world datasets. Through statistical analysis and
machine learning techniques, we demonstrate the superiority of our
approach in detecting and differentiating complex signals, as well as
its performance in fault diagnosis tasks. Experimental results highlight
the superiority of mvMDLZC in detecting dynamic changes in time
series and achieving the best performance in recognizing different fault
states when compared to univariate MLZC, mvMLZC, and mvMDE.
Overall, our proposed mvDLZC and mvMDLZC methods provide a com-
prehensive framework for analyzing multivariate time series data. The
experimental results validate the superior performance of the proposed
methods compared to existing LZC-based approaches, showcasing their
potential in fault diagnosis applications.

The main contributions of this work can be summarized as follows:
(1) To capture the characteristics from multichannel or multivariate

systems, multivariate dispersion Lempel–Ziv complexity is proposed to
extend the original Lempel–Ziv complexity to multivariate form.

(2) The multivariate dispersion Lempel–Ziv complexity is further
extended to multiple time scales, namely mvMDLZC, for comprehensive
feature extraction.

(3) The effectiveness of the proposed mvMDLZC method is system-
atically validated through comparative studies using both synthetic and
real-world multichannel signals.

The remainder of this paper is organized as follows: In Section 2,
we provide a detailed explanation of the original LZC, the proposed
mvDLZC, and its multiscale version, mvMDLZC. Section 3 presents the
results of synthetic signal experiments to showcase the effectiveness of
our proposed methods. In Section 4, we apply mvDLZC and mvMDLZC
to analyze real-world mechanical signals, demonstrating their superi-
ority over existing approaches in fault diagnosis applications. Finally,
in Section 5, we summarize our findings and discuss future research

directions.
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2. Theory

2.1. Lempel–Ziv complexity

The LZC algorithm consists of two fundamental operations: copy
and insert [25]. Here is a detailed description of the LZC algorithm:

Step 1 Mathematically, convert the finite sequence 𝑥(𝑡) into a symbolic
sequence 𝑆𝑁 = {𝑠1𝑠2...𝑠𝑁} by comparing it with the threshold
value (median value 𝑇𝑑) according to Eq. (1). By applying this
process, the sequence 𝑥(𝑡) is converted into a symbol series
represented by 0 and 1.

𝑠𝑖 =
{

0, if𝑥(𝑖) < 𝑇𝑑
1, otherwise

(1)

Step 2 From the resulting symbolic sequence 𝑆𝑁 , the number of dis-
tinctive patterns is identified by parsing it from left to right. Set
the initial value 𝑆𝑣,0 = {}, 𝑄0 = {}, 𝐶𝑁 (0) = 0, and 𝑖 = 1. Note
that 𝑆𝑣 and 𝑄 represent the substrings of the symbol series 𝑆𝑁 ,
and 𝐶𝑁 represents complexity counter.

tep 3 Let 𝑄𝑖 =
{

𝑄𝑖−1𝑠𝑖
}

and check if 𝑄𝑖 is already present in the
set of 𝑆𝑣,𝑖−1 =

{

𝑆𝑣,𝑖−2𝑠𝑖−1
}

. If 𝑄𝑖 exists in 𝑆𝑣,𝑖−1 =
{

𝑆𝑣,𝑖−2𝑠𝑖−1
}

,
set 𝐶𝑁 (𝑖) = 𝐶𝑁 (𝑖 − 1) and 𝑖 = 𝑖 + 1. Otherwise, set 𝑄𝑖 = {},
𝐶𝑁 (𝑖) = 𝐶𝑁 (𝑖 − 1) + 1, and update 𝑖 = 𝑖 + 1.

tep 4 Repeat Step (3) until all symbols in the sequence have been
processed, and then the 𝐶𝑁 (𝑁) can be obtained. The resulting
value of 𝐶𝑁 (𝑁) represents the total number of distinct patterns
identified, which corresponds to the Lempel–Ziv complexity of
the sequence.

tep 5 The Lempel–Ziv complexity is normalized according to Eqs. (2)
and (3).

𝐶𝑛,𝑁 =
𝐶𝑁 (𝑁)
𝐶𝑈𝐿

(2)

𝐶𝑈𝐿 = lim
𝑁→∞

𝐶𝑁 (𝑁) ≈ 𝑁
log2𝑁

(3)

2.2. Multivariate dispersion Lempel–Ziv complexity

The original LZC method can be utilized for univariate time series
analysis, but it is unsuitable to accurately reflect the complexity of
multivariable time series in complex systems. Thus, in this section, we
extend the Lempel–Ziv complexity to multivariate form and propose
multivariate dispersion Lempel–Ziv complexity (mvDLZC), which ex-
tends the Lempel–Ziv complexity to multivariate form by introducing
multivariate dispersion pattern into Lempel–Ziv complexity in this
paper.

Assuming a multivariate time signal with channel 𝑝 and length 𝑁 :
𝐗 = {𝑥𝑘,𝑖}

𝑖=1,2,…,𝑁
𝑘=1,2,…,𝑝 . In the mvDLZC algorithm, the detailed steps are as

ollows.

tep 1 The multivariate time signal 𝐗 = {𝑥𝑘,𝑖}
𝑖=1,2,…,𝑁
𝑘=1,2,…,𝑝 are mapped to

𝐙 = {𝑧𝑐𝑘,𝑖}
𝑖=1,2,…,𝑁
𝑘=1,2,…,𝑝 with 𝑐 classes from 1 to 𝑐 using NCDF [46].

Firstly, the NCDF process maps 𝐗 into 𝐘 = {𝑦𝑘,𝑖}
𝑖=1,2,…,𝑁
𝑘=1,2,…,𝑝 from 0

to 1 as follows:

𝑦𝑘,𝑖 =
1

𝜎𝑘
√

2𝜋 ∫

𝑥𝑘,𝑖

−∞
𝑒
−(𝑡−𝜇𝑘 )

2

2𝜎2𝑘 𝑑𝑡 (4)

where 𝜇𝑘 and 𝜎𝑘 are the mean and standard deviation of the
time series 𝑥𝑘, respectively. Then a linear equation is used to
assign each 𝑦𝑘,𝑖 to an integer from 1 to c as follows:

𝑧𝑐 = 𝑟𝑜𝑢𝑛𝑑(𝑐 ⋅ 𝑦 + 0.5) (5)
3

𝑘,𝑖 𝑘,𝑖
where 𝑧𝑐𝑘,𝑖 denotes the 𝑖th member of the signal in the 𝑘th
channel and the rounding process involves either increasing or
decreasing a number to the next digit. Note that, although this
part is linear, the whole mapping process is nonlinear because
of the use of NCDF [46].

Step 2 Multivariate embedded vectors are generated according to the
multivariate embedding theory [46,47]. Mathematically, the
multivariate embedded reconstruction of 𝐙 = {𝑧𝑐𝑘,𝑖}

𝑖=1,2,…,𝑁
𝑘=1,2,…,𝑝 is

defined as:

𝐙𝑚(𝑗) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑧𝑐1,𝑗 𝑧𝑐1,𝑗+𝑑1 … 𝑧𝑐1,𝑗+(𝑚1−1)𝑑1

𝑧𝑐2,𝑗 𝑧𝑐2,𝑗+𝑑2 … 𝑧𝑐2,𝑗+(𝑚2−1)𝑑2

⋮ ⋮ ⋱ ⋮

𝑧𝑐𝑝,𝑗 𝑧𝑐𝑝,𝑗+𝑑𝑝 … 𝑧𝑐𝑝,𝑗+(𝑚𝑝−1)𝑑𝑝

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(6)

where 𝐦 = {𝑚1, 𝑚2,… , 𝑚𝑝} and 𝐝 = {𝑑1, 𝑑2,… , 𝑑𝑝} denote the
embedding dimension and the time lag vectors, respectively.
Note that the length of 𝐙𝑚(𝑗) is ∑𝑝

𝑘=1 𝑚𝑘. For simplicity, we
assume 𝑑𝑘 = 𝑑 and 𝑚𝑘 = 𝑚, that is, all the embedding dimension
values and all the delay values are equal.

tep 3 Each series 𝐙𝑚(𝑗) is mapped to a class of dispersion pattern,
and each subsequence 𝐙𝑚(𝑗) is numbered by the class of these
patterns. There are 𝑐𝑚×𝑝 classes in total, since the signal has
(𝑚 × 𝑝) members and each member can be one of the integers
from 1 to 𝑐. For example, assuming 𝑚 = 2, 𝑐 = 2, and 𝑝 = 2, there
are 𝑐𝑚×𝑝 = 22×2 = 16 potential dispersion patterns, as illustrated
in Fig. 1.

tep 4 After conversion in Step (3), we can get a new sequence 𝑆𝑁
by labeling 𝐙𝑚(𝑗) using multivariate dispersion patterns. 𝑆𝑁 has
a length of 𝑁 − (𝑚 − 1)𝑑. All elements within 𝑆𝑁 are integers
falling within the range of 1 to 𝑐𝑚×𝑝.

tep 5 Calculate the complexity counter value 𝐶𝑁 (𝑁) of pattern se-
quence 𝑆𝑁 based on the definition of Lempel–Ziv complexity
detailed in Section 2.1.

tep 6 Compute the normalized mvDLZC value according to:

𝑚𝑣𝐷𝐿𝑍𝐶 =
𝐶𝑁 (𝑁)
𝐶𝑈𝐿

(7)

𝐶𝑈𝐿 = lim
𝑁→∞

𝐶𝑁 (𝑁) ≈
𝑁 − (𝑚 − 1)𝑑

log𝑐𝑚×𝑝𝑁 − (𝑚 − 1)𝑑
(8)

Algorithm 1 Multivariate dispersion Lempel–Ziv complexity (mvDLZC)

Input: Multivariate time series 𝐗 = {𝑥𝑘,𝑖}
𝑖=1,2,...𝑁
𝑘=1,2,...𝑝 with channel 𝑝 and

length 𝑁 , embedding dimension 𝑚 and the time lag 𝑑, number of
classes 𝑐

Output: The value of mvDLZC
1: Obtain the symbolic series 𝐙 = {𝑧𝑐𝑘,𝑖}

𝑖=1,2,...𝑁
𝑘=1,2,...𝑝 according to Eq.(4)

and Eq.(5).
2: Construct multivariate state space matrix 𝐙𝑚(𝑗) by multivariate

embedding theory.
3: Define the multivariate dispersion patterns.
4: Get pattern sequence 𝑆𝑁 by labelling 𝐙𝑚(𝑗) based on multivariate

dispersion patterns.
5: Obtain complexity counter value 𝐶𝑁 (𝑁) of 𝑆𝑁 based on the

definition of Lempel-Ziv complexity.
6: Compute the normalized mvDLZC value according to Eq.(7) and

Eq.(8).

The pseudocode of multivariate dispersion Lempel–Ziv complexity
is illustrated in Algorithm 1. Additionally, the schematic diagram of



Information Fusion 104 (2024) 102152S. Wang et al.
Fig. 1. An example for multivariate dispersion patterns with 𝑚 = 2, 𝑐 = 2, 𝑝 = 2.
Fig. 2. The schematic diagram of the calculation steps for multivariate dispersion Lempel–Ziv complexity.
the calculation steps for two-channel data is illustrated in Fig. 2.
In essence, this method transforms multivariate time series into a
one-dimensional symbolic sequence through multivariate dispersion
patterns and subsequently calculates the LZC value.

To provide a more detailed understanding of this method, let us con-
sider a practical example using a two-dimensional signal with a length
of 10 data points. In this example, we will calculate the mvDLZC value

for a 2-channel time series, represented as 𝐗 =
{

8, 6, 5, 0, 3, 2, 2, 2, 8, 0
4, 6, 1, 6, 8, 2, 3, 8, 6, 4

}

with 𝑑 = 1, 𝑚 = 2, and 𝑐 = 2. We first map 𝐗 to two classes and obtain

𝐙 =
{

2, 2, 2, 1, 1, 1, 1, 1, 2, 1
1, 2, 1, 2, 2, 1, 1, 2, 2, 1

}

according to Step (1) in Section 2.2.

In this example, there are 𝑐𝑚×𝑝 = 22×2 = 16 potential dispersion pat-
terns, as illustrated in Fig. 1, and 10−(2−1) = 9 multivariate embedding
vectors with the length of two and their associated dispersion patterns
4

are as follows:

𝐙2(1) =
{

2, 2
1, 2

}

= 𝜋2212,𝐙2(2) =
{

2, 2
2, 1

}

= 𝜋2221,

𝐙2(3) =
{

2, 1
1, 2

}

= 𝜋2112,𝐙2(4) =
{

1, 1
2, 2

}

= 𝜋1122,

𝐙2(5) =
{

1, 1
2, 1

}

= 𝜋1121,𝐙2(6) =
{

1, 1
1, 1

}

= 𝜋1111,

𝐙2(7) =
{

1, 1
1, 2

}

= 𝜋1112,𝐙2(8) =
{

1, 2
2, 2

}

= 𝜋1222,

𝐙2(9) =
{

2, 1
}

= 𝜋2121.
2, 1
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By labeling 𝐙 using multivariate dispersion patterns, we can get a
pattern sequence as follows:
{

𝜋2212, 𝜋2221, 𝜋2112, 𝜋1122, 𝜋1121, 𝜋1111, 𝜋1112, 𝜋1222, 𝜋2121
}

↓

{‘10’, ‘12’, ‘14’, ‘3’, ‘4’, ‘1’, ‘2’, ‘7’, ‘16’}

According to Steps (2)-(4) in Section 2.1, we can get 𝐶𝑁 (𝑁) = 9,
𝐶𝑈𝐿 = 𝑁−(𝑚−1)𝑑

log𝑐𝑚×𝑝𝑁−(𝑚−1)𝑑 = 9
log169

= 11.3567. Finally, 𝑚𝑣𝐷𝐿𝑍𝐶 = 𝐶𝑁 (𝑁)
𝐶𝑈𝐿

=
9

11.3567 = 0.7925 is calculated.
It is important to note that the order of channels in a multichannel

ime series does not affect the resulting LZC value. While the assign-
ent of dispersion patterns may change, the overall LZC value remains
nchanged. This is because the primary objective of the mvDLZC
omputation is to quantify the complexity based on the number of
ispersion patterns, rather than relying on the precise numerical values
r amplitudes within the pattern sequence.

.3. Multivariate multiscale dispersion Lempel–Ziv complexity

The mvDLZC is a single-scale analysis method, which describes the
haracteristics at only one scale, limiting its ability to capture com-
rehensive feature information. To enhance the feature representation
apability and capture the dynamical properties of signals at various
ime scales comprehensively, we employ multiscale analysis through
he coarse-grained method [19]. The procedure involves decomposing
he original time series into multiple scaled series through a coarse-
raining process. Each scaled series is then processed individually
sing mvDLZC, which we refer to as multivariate multiscale disper-
ion Lempel–Ziv complexity (mvMDLZC). This approach allows us to
xamine the signal characteristics at different scales, providing a more
omprehensive understanding of the underlying dynamics. The detailed
alculation procedure of the proposed mvMDLZC is as follows:

tep 1 Given a multivariate time signal with channel 𝑝 and length 𝑁 :
𝐗 = {𝑥𝑘,𝑖}

𝑖=1,2,…,𝑁
𝑘=1,2,…,𝑝 , divide it into coarse-grained series 𝐓(𝑠) =

{𝐓(𝑠)
𝑘,1...𝐓

(𝑠)
𝑘,𝑛𝑠

}, 𝑛𝑠 =
[

𝑁
𝑠

]

, 1 ≤ 𝑠 ≤ 𝜏 according to Eq. (9).

𝐓(𝑠)
𝑘,𝑗 =

1
𝑠

𝑗𝑠
∑

𝑖=(𝑗−1)𝑠+1
𝑥𝑘,𝑖, 1 ≤ 𝑗 ≤ 𝑛𝑠 (9)

where 1 ≤ 𝑘 ≤ 𝑝, 𝜏 represents the scale factor. To get the
coarse-grained time series at the scale factor of 𝑠, the original
time series is divided into non-overlapping windows of length
𝑠. Within each window, the data points from the original multi-
variate time series are averaged. The original multivariate time
series can be considered to have a scale factor of 𝜏 = 1, and it
can be represented by 𝐓(1).

tep 2 Calculate the mvDLZC value to quantify the stochasticity or
irregularity of the coarse-grained multivariate time series 𝐓(𝑠).
Mathematically, it can be expressed as:

𝑚𝑣𝑀𝐷𝐿𝑍𝐶(𝐗, 𝜏, 𝑚, 𝑑, 𝑐) = {𝑚𝑣𝐷𝐿𝑍𝐶(𝐓(𝑠), 𝑚, 𝑑, 𝑐)} (10)

where 1 ≤ 𝑠 ≤ 𝜏.

The pseudocode of mvMDLZC can be seen in Algorithm 2. Regard-
ing the scale factor 𝜏, it represents the dimension of LZC features.
A smaller 𝜏 may not adequately capture the critical fault features,
leading to ineffective fault diagnosis. On the other hand, a very large
𝜏 can result in dimensionality issues, making it challenging to extract
discriminative fault information and potentially leading to suboptimal
recognition results. Additionally, a larger 𝜏 can increase the compu-
tational time required for feature extraction, potentially affecting the
efficiency of the process. In this study, we have set 𝜏 at 20. By employ-
ing multiscale analysis and mvDLZC, we can analyze the dynamics of
signal at various resolutions and capture its complexity across multiple
time scales and channels.
5

Algorithm 2 Multivariate multiscale dispersion Lempel–Ziv complexity
(mvMDLZC)
Input: Multivariate time series 𝐗 = {𝑥𝑘,𝑖}

𝑖=1,2,...𝑁
𝑘=1,2,...𝑝 with channel 𝑝 and

length 𝑁 , embedding dimension 𝑚 and the time lag 𝑑, number of
classes 𝑐, and scale factor 𝜏

Output: The value of mvMDLZC
1: for 𝑠 = 1 to 𝜏 do
2: Obtain the coarse-grained multivariate time series 𝐓(𝑠) =

{𝐓(𝑠)
𝑘,1...𝐓

(𝑠)
𝑘,𝑛𝑠

} according to Eq.(9).
3: Compute the normalized mvDLZC value of 𝐓(𝑠).
4: Augment the LZC value 𝑚𝑣𝑀𝐷𝐿𝑍𝐶1∶𝑠 =

{𝑚𝑣𝑀𝐷𝐿𝑍𝐶1∶𝑠−1;𝑚𝑣𝐷𝐿𝑍𝐶(𝐓(𝑠), 𝑚, 𝑑, 𝑐)}.
5: end for

3. Performance verification using synthetic signals

In this section, we conducted the performance verifications on the
proposed mvMDLZC method using synthetic signals and compared
it to the original mvMLZC method. To assess the effectiveness of
the proposed method, we utilized combinations of uncorrelated white
Gaussian noise (WGN) and 1∕𝑓 noise, which are known for their
differences in complexity and irregularity.

3.1. White Gaussian noise and 1∕𝑓 noise

Previous research has employed combinations of WGN and 1∕𝑓
noise in multivariate time series to evaluate multivariate multiscale
entropy algorithms [48,49]. To validate the performance of mvMDLZC,
we formulated four distinct combinations of WGN and 1∕𝑓 noise for
the three-channel time series. These configurations resulted in four
experimental setups for validation:

(1) Three channels of WGN (WGN WGN WGN).
(2) Two channels of WGN and one channel of 1∕𝑓 noise (WGN WGN

1∕𝑓 ).
(3) One channel of WGN and two channels of 1∕𝑓 noise (WGN 1∕𝑓

1∕𝑓 ).
(4) Three channels of 1∕𝑓 noise (1∕𝑓 1∕𝑓 1∕𝑓 ).

The time-domain signals corresponding to the four combinations
of WGN and 1/f noise are illustrated in Fig. 3(a)–(d), respectively.
Each experimental setup was independently repeated 100 times, and
the mean and standard deviation were calculated for each scale factor
(𝜏) ranging from 1 to 20. Additionally, all experimental setups were
replicated for samples with channel lengths of 15,000 and 10,000
to investigate any potential differences resulting from different data
lengths.

It is worth noting that existing mvMLZC does not involve parameter
selection. The parameter values used for mvMDLZC were chosen based
on mvMDE and matched those used in the original mvMDE study to
facilitate easy comparison between the two studies [46]. Therefore, for
simplicity, we utilized 𝑐 = 4, 𝑑 = 1, and 𝑚 = 2 for all signals employed
in this study.

3.2. Synthetic time-series results

In this experimental analysis, we investigated the performance of
the proposed mvMDLZC method and compared it to the traditional
mvMLZC method using 100 independent realizations of uncorrelated
trivariate WGN and 1∕𝑓 noise, as described in Section 3.1. Each combi-
nation of the 1∕𝑓 noise and WGN signals had 15,000 sample points. To
evaluate the performance of both methods, we computed the average
and standard deviation (SD) of the results obtained from the 100

realizations. The outcomes for the proposed mvMDLZC method are
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Fig. 3. The time-domain signals for four combinations of WGN and 1/𝑓 noise with data length of 15 000.
Fig. 4. Lempel–Ziv complexity curves for four groups of noise signals with data length
f 15 000.

hown in Fig. 4(a), while those for the traditional mvMLZC method are
resented in Fig. 4(b). By analyzing the average and SD values, we can
ssess the effectiveness and consistency of each method in capturing
he characteristics and distinguishing between the different noise types
n the trivariate time series data.

On the one aspect, as can be seen from Fig. 4, the SD values for
roposed mvMDLZC and traditional mvMLZC show a clear decreasing
rend. That is because multiscale analysis would reduce the length of
ignals. When the length of trivariate signals, obtained by the coarse-
raining process, decreases (i.e., the scale factor increases), the SD
ecomes larger. On the other aspect, it can be observed that mvMLZC
xhibit more unstable behavior at large scale factors, as indicated by
arger error bars in Fig. 4(b). By contrast, the proposed mvMDLZC is
uch more stable, as shown in Fig. 4(a).

To further compare the performance of the mvMLZC and proposed
vMDLZC methods, we used the coefficient of variation (CV) as a
easure of relative variability. The CV value was calculated as the

tandard deviation divided by the mean of a time series, allowing us
o compare the degree of variation between different data series, even
f their means are significantly different. We investigated the results
btained by uncorrelated noise signals for each 𝜏 value from 1 to 20,
s illustrated in Fig. 5.

From Fig. 5, it can be observed that both mvMDLZC and mvMLZC
ethods exhibit a clear decreasing trend in CV values. However, the
roposed mvMDLZC method outperforms the existing mvMLZC method
n terms of stability of results, as evidenced by the smaller CV values
6

Fig. 5. Coefficient of variation (CV) curves of mvMDLZC and mvMLZC for four
combinations of WGN and 1∕𝑓 noise with data length of 15 000.

for the four possible combinations of WGN and 1∕𝑓 noise achieved by
the mvMDLZC method.

To evaluate the influence of signal length on the performance of
the proposed mvMDLZC method, we conducted experiments employing
trivariate 1∕𝑓 noise and WGN signals with a length of 10 000 sample
points. The results for both the mvMDLZC and mvMLZC methods
across scales 1 to 20 are depicted in Fig. 6(a) and (b), respectively.
Furthermore, we computed and visualized the CV values achieved with
a signal length of 10 000 sample points in Fig. 7.

The results obtained with a signal length of 10 000 points align
with those obtained with a signal length of 15 000 points. Moreover,
an examination of Fig. 7 reveals that the CV values attained by the
proposed mvMDLZC method consistently remain below 0.02 across all
scales. In contrast, the CV range achieved by the mvMLZC method
can extend to approximately 0.032. This observation suggests that the
performance of the proposed mvMDLZC method is not significantly
impacted by signal length variations, indicating its robust and stable
results.

For ease of comparison, Table 1 displays the CV values at a scale
factor of 10 for both data lengths of 10 000 and 15 000. As depicted in
Table 1, for both data lengths, the CV values obtained using the pro-
posed mvMDLZC method are consistently smaller than those obtained
with the existing mvMLZC method across all four types of multichannel
signals. These findings emphasize the superior and stable performance
of the proposed mvMDLZC method in the analysis of multichannel time

series.
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Fig. 6. Lempel–Ziv complexity curves for four groups of noise signals with data length
of 10 000.

Fig. 7. Coefficient of variation (CV) curves of mvMDLZC and mvMLZC for four
combinations of WGN and 1/𝑓 noise with data length of 10 000.

Table 1
The coefficient of variation (CV) of proposed mvMDLZC and mvMLZC at scale factor
10 for four combinations of WGN and 1/𝑓 noise.

Data length Multichannel signals mvMDLZC mvMLZC

15 000

WGN WGN WGN 0.0076 0.0082
WGN WGN 1/𝑓 0.0084 0.0115
WGN 1/𝑓 1/𝑓 0.0087 0.0149
1/𝑓 1/𝑓 1/𝑓 0.0112 0.0209

10 000

WGN WGN WGN 0.0090 0.0091
WGN WGN 1/𝑓 0.0089 0.0131
WGN 1/𝑓 1/𝑓 0.0115 0.0192
1/𝑓 1/𝑓 1/𝑓 0.0105 0.0247

4. Applications for experimental signals

In this section, two different experimental case studies, involving a
rotor system and a planetary gearbox, were conducted to showcase the
effectiveness of mvMDLZC in practical fault diagnosis applications.

To assess the performance of mvDLZC and mvMDLZC, we con-
ducted a comparative analysis against several established methods,
including univariate LZC, mvLZC, mvDE, and their multiscale variants.
Firstly, the comparison was made between univariate LZC and MLZC
against the proposed methods to validate the benefits of multichannel
data analysis. Secondly, the evaluation involved a comparison between
mvLZC and mvMLZC, which are existing multivariate methods based
on LZC. Thirdly, we compared the proposed methods with mvDE and
mvMDE, as our proposed approaches are based on the concept of
multivariate dispersion patterns, and mvMDE represents one of the
commonly utilized multivariate entropy algorithms [49,50].

4.1. Case study I: Fault diagnosis of rotor system

4.1.1. Description of rotor system
In this study, a rotor test rig system manufactured by WuXi HouDe

Automation Meter was utilized to simulate rubbing faults and rotor
7

Fig. 8. The sketch of the rotor test rig: (a) three-dimensional model of rotor system,
(b) real rotor test rig.

Fig. 9. The fault types of the experimental rotor system: (a) blade crack, (b) full
annular rubbing, (c) shaft crack.

faults under different working conditions. The photograph of the ex-
perimental rotor rig, consisting of a rotating shaft, blade disk, casings,
bearings, and sensors, is depicted in Fig. 8. The experimental procedure
encompasses four distinct working conditions: normal condition (NOR)
and three fault conditions. The three fault conditions are full annular
rubbing (FAR), blade crack (BC), and shaft crack (SC), as illustrated
in Fig. 9. It is noted that in the case of full annular rubbing, the rotor
remains in constant contact with a fixed point.

To collect the vibration signals, an accelerometer was mounted on
the top of the bearing casing. It should be noted that vibration signals
were recorded in both the vertical and horizontal directions for this
case study. The data acquisition system used had a sampling frequency
of 10 kHz, and the rotation speed of the system was kept constant at
1000 RPM. Fig. 10 showcases the normalized two-channel time-domain
waveforms corresponding to the four different states. Notably, there are
100 samples with two-channel time series data available for each health
condition, resulting in a total of 400 samples for this case study.

4.1.2. Results and analysis
In the first experimental application, five single-scale methods were

conducted for comparison to validate the effectiveness of multichannel
signal analysis. The comparison results are presented as violin plots
in Fig. 11(a)–(e) for proposed mvDLZC, univariate LZC (LZC_V and
LZC_H), mvLZC and mvDE, respectively. The violin plots offer a visual
representation of the full feature distribution for the five methods
across four different states.

From Fig. 11(a), it is evident that the feature distribution of the
healthy state and fault states in mvDLZC exhibit significant differences,
enabling a clear differentiation between normal and faulty conditions.
Additionally, the significant differences in median values for the three
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Fig. 10. The time-domain signals of four conditions for the rotor system: (a) normal
ondition, (b) blade crack, (c) full annular rubbing, (d) shaft crack.

Table 2
Differences between LZC values or entropy values using Mann–Whitney 𝑈 -test.
𝑝-value Method

mvDLZC mvLZC mvDE LZC_V LZC_H

NOR vs. BC 2.5E−34 2.5E−34 2.6E−34 2.4E−34 2.5E−34
NOR vs. FAR 2.5E−34 2.5E−34 2.3E−22 2.4E−34 2.4E−34
NOR vs. SC 2.5E−34 2.5E−34 7.5E−29 2.4E−34 2.5E−34
BC vs. FAR 6.8E−23 3.1E−34 2.6E−34 2.4E−34 2.8E−26
BC vs. SC 1.2E−22 2.9E−29 0.8709 2.6E−34 0.0147
FAR vs. SC 9.9E−33 4.5E−16 8.0E−34 0.6586 1.9E−16

fault states signify that mvDLZC can not only detect faults but also ef-
fectively discriminate between different fault types. However, as shown
in Fig. 11(d), LZC_V exhibits similar median entropy values for SC and
FAR states, making it challenging to differentiate between these two
states. Similarly, Fig. 11(c) and (e) demonstrates a similar phenomenon
for mvDE and LZC_H, where the median values for BC state closely
resemble those of the SC state, posing difficulties in distinguishing
between them.

Moreover, in order to quantitatively assess the differences between
feature values across different states, for each method, all feature
values were statistically analyzed by Mann–Whitney 𝑈 test to obtain
𝑝-values. The obtained 𝑝-values are used to assess the significance of
the differences, with a significance level of 𝑝 ≪ 1E-3 indicating statis-
tically significant differences and 𝑝 ≪ 1E-4 denoting more significant
differences. The statistical results are summarized in Table 2.

From the results presented in Table 2, it is evident that both
mvDLZC and mvLZC methods demonstrate highly significant differ-
ences (𝑝 ≪ 1E-4) in distinguishing between any two states, indicating
the highest level of differentiation among all the methods. This high-
lights the effectiveness of multichannel data analysis in fault detection.
On the other hand, LZC_V, LZC_H, and mvDE methods show poor
performance in the analysis. Specifically, LZC_V fails to distinguish
significant differences between the FAR and SC states, while LZC_H and
mvDE are both unable to distinguish between the BC and SC states.
Based on the experimental results and the statistical analysis, it can
be concluded that the proposed mvDLZC method exhibits a strong
capability to detect dynamic changes in mechanical signals.

Moreover, machine learning was applied to assess the feature dis-
crimination capacities of different LZC-based methods and mvDE.
Specifically, the support vector machine (SVM) algorithm [51] was
implemented for classification tasks. The dataset was partitioned into a
training set, which consisted of 75% of randomly selected samples (300
samples), and a test set, which included the remaining 25% of samples
8

(100 samples).
Fig. 12 illustrates the results of the machine learning analysis. These
results are consistent with the trends observed in the violin plots.
Specifically, the performance of the mvDLZC and mvLZC methods sur-
passes that of the single-source LZC_V and LZC_H methods, highlighting
the advantage of using multichannel data for capturing fault-related
information and achieving improved classification rates. In contrast,
the performance of the mvDE method is mediocre. On the other hand,
the multiscale version, the mvMDLZC method with scale factor of 20,
exhibits superior performance compared to mvDLZC, indicating the
effectiveness of the multiscale analysis in fault diagnosis of rotating ma-
chinery. These results highlight the potential of the mvMDLZC method
as a useful approach for accurate and reliable fault diagnosis of the
rotor system.

4.2. Case study II: Fault diagnosis of planetary gearbox

4.2.1. Description of planetary gearbox
The second experimental case study focused on a planetary gearbox

system, as depicted in Fig. 13. The system mainly consists of a motor, a
planetary gearbox, a tachometer, and a magnetic damping component.
The vibration signals used in this study were collected by employing an
accelerometer that was positioned on the planetary gearbox casing. The
data acquisition was performed with a sampling frequency of 16 kHz.
Throughout the experiment, the load was set at 5 N m, and the motor’s
rotation speed was maintained at a constant value of 1000 RPM.

During the experimental process, a total of six conditions were
investigated, including the normal condition (NOR) and five fault
conditions. The fault conditions included planet gear fault (PGF), sun
gear fault (SGF), bearing fault (BF), ring gear fault (RGF), and planetary
carrier fault (PCF), as illustrated in Fig. 14. These conditions were
simulated to evaluate the performance of the proposed methods in
diagnosing faults in the planetary gearbox system.

The vibration signals in the radial, tangential, and axial directions
were collected, respectively. The collected signals were then normal-
ized, and the corresponding three-channel time-domain waveforms
under different states are presented in Fig. 15. In line with the previous
case study, there are 100 samples available for each health condition,
amounting to a total of 600 samples.

4.2.2. Results and analysis
Similar to Case Study I, in this case study, we firstly compared the

performance of mvDLZC, mvLZC, mvDE, and univariate LZC methods
(LZC_R, LZC_T, LZC_A) for signal analysis. The feature distribution of
these six single-scale methods across six different states is depicted as
violin plots in Fig. 16. Consistently, we subjected the feature values
to the Mann–Whitney 𝑈 -test to obtain 𝑝-values for each method, as
illustrated in Table 3.

These plots offer a comprehensive view of the distribution of LZC
or entropy features. From Fig. 16(a), it is evident that the proposed
mvDLZC method effectively distinguishes different working states of
planetary gearbox, exhibiting significant differences among the states.
On the other hand, as can be seen from Fig. 16(c), the mvDE method
fails to differentiate between the RGF and PCF conditions. Similarly,
from Fig. 16(d)–(f), it can be observed that the three univariate LZC
methods also face challenges in distinguishing certain conditions.
Specifically, LZC_R and LZC_A show limited differentiation between the
SGF and BF conditions, and LZC_T struggles to distinguish the SGF and
PGF conditions. The associated 𝑝-values, detailed in Table 3, confirm
that proposed mvMDLZC exhibits significant distinctions between any
two states, with 𝑝-values significantly below 1E-4. This underscores a
high degree of differentiation between any pair of conditions.

Similarly, these features were employed for classification and fault
diagnosis tasks using the SVM algorithm. To assess the performance of
each method, 75% of samples from each of the six states were randomly
selected as the training set, resulting in a total of 6 × 75 samples. The

remaining 25% of samples were designated as the test set, amounting
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Fig. 11. Violin plots for features obtained by (a) mvDLZC, (b) mvLZC, (c) mvDE, (d) LZC_V, and (e) LZC_H for rotor system across four states.
Fig. 12. Diagnostic accuracies of different methods for the rotor system.

Fig. 13. The sketch of the planetary gearbox system: (a) three-dimensional model of
planetary gearbox system, (b) real gearbox test rig.
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Fig. 14. The fault types of the experimental planetary gearbox: (a) planet gear fault,
(b) sun gear fault, (c) bearing fault, (d) ring gear fault and (e) planetary carrier fault.

to a total of 6 × 25 samples. The comparison results are depicted in
Fig. 17.

Among the eight methods compared, the proposed mvMDLZC con-
sistently achieves the highest diagnostic performance across 20 re-
peated runs, with a mean identification accuracy of 98.43%. Addition-
ally, mvMDLZC method exhibits the smallest error bars, indicating its
high stability. These small error bars suggest that the results obtained
from mvMDLZC are consistent and less affected by variations in exper-
imental conditions or data samples. This stability is crucial in practical
applications, ensuring the reliable and consistent performance of the
mvMDLZC method in different scenarios and datasets.

The mvMLZC method, another multivariate approach, demonstrates
the second-highest recognition accuracy of 95.93%, significantly sur-
passing the other single-measurement-based methods. In contrast, the
mvDE method shows mediocre performance in comparison, while the
univariate LZC methods exhibit lower recognition rates below 70%.
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Fig. 15. The time-domain signals of six conditions for the rotor system: (a) normal condition (NOR), (b) planet gear fault (PGF), (c) sun gear fault (SGF), (d) bearing fault (BF),
e) ring gear fault (RGF) and (f) planetary carrier fault (PCF).
Fig. 16. Violin plots for features obtained by (a) mvDLZC, (b) mvLZC, (c) mvDE, (d) LZC_R, (e) LZC_T, and (f) LZC_A for the planetary gearbox system across six states.
These lower recognition rates of the univariate LZC methods indicate
their limitations in accurately identifying and classifying faults in the
given dataset. Additionally, the multiscale-based methods outperform
the single-scale methods, highlighting the effectiveness and necessity of
the coarse-graining process. These findings emphasize the importance
of utilizing multivariate approaches, such as mvMDLZC and mvMLZC,
which outperform both mvDE and univariate LZC methods in achieving
higher accuracy and reliability in fault diagnosis tasks.

In order to provide a comprehensive illustration and comparison
of the diagnostic performance among various multiscale-based ap-
proaches, we also conducted the confusion matrices and analyzed their
quantitative diagnostic metrics, which include precision, recall, and
10

F1-score [52]. The results are presented in both Fig. 18 and Table 4.
Fig. 18 visually presents the confusion matrix for planetary gear-
box health diagnostics using different approaches. The confusion ma-
trix offers a detailed overview of diagnostic outcomes for six health
states, including specific classification numbers and an assessment of
overall accuracy. Notably, our proposed mvMDLZC approach exhibits
exceptional performance, achieving an impressive overall diagnostic
accuracy of 99.3%. It is worth mentioning that the MLZC_T method
misclassifies only a minimal number of test samples, resulting in an
accuracy rate of 96%. In contrast, the existing multivariate method,
mvMLZC, does not demonstrate a significant enhancement in multi-
channel diagnostics compared to MLZC_R and MLZC_A, and it even
falls below the accuracy of MLZC_T. Additionally, mvMDE performs

mediocrely, with an overall recognition rate of 86%.
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Fig. 17. Diagnostic accuracies of different methods for the planetary gearbox system.

Table 3
Differences between LZC values or entropy values using Mann–Whitney 𝑈 -test for
planetary gearbox system.
𝑝-value Method

mvDLZC mvLZC mvDE LZC_R LZC_T LZC_A

NOR vs. PGF 2.5E−34 2.5E−34 2.6E−34 0.075 2.4E−34 2.4E−34
NOR vs. SGF 2.5E−34 2.5E−34 2.6E−34 2.2E−34 2.4E−34 2.3E−34
NOR vs. BF 2.5E−34 2.5E−34 2.6E−34 2.2E−34 2.3E−34 2.4E−34
NOR vs. RGF 2.5E−34 2.5E−34 2.6E−34 8.9E−29 2.3E−34 2.8E−34
NOR vs. PCF 2.5E−34 2.5E−34 2.6E−34 2.3E−34 2.4E−34 2.4E−34
PGF vs. SGF 2.5E−34 2.8E−34 2.6E−34 2.2E−34 0.1931 4.7E−31
PGF vs. BF 5.4E−17 1.2E−33 1.5E−31 2.2E−34 4.8E−29 9.9E−29
PGF vs. RGF 3.2E−34 2.7E−30 6.7E−34 8.4E−31 1.1E−32 2.7E−34
PGF vs. PCF 5.9E−31 2.6E−34 3.1E−32 2.2E−34 3.6E−34 1.7E−16
SGF vs. BF 2.5E−34 4.0E−18 2.6E−34 0.8340 1.5E−30 0.4321
SGF vs. RGF 2.5E−34 2.5E−34 2.6E−34 4.6E−34 1.1E−32 2.2E−34
SGF vs. PCF 2.5E−34 0.6405 2.6E−34 0.0039 5.3E−34 4.7E−34
BF vs. RGF 2.5E−34 2.4E−34 1.3E−20 2.6E−34 4.1E−08 2.3E−34
BF vs. PCF 1.1E−17 1.1E−19 6.5E−06 0.0010 2.3E−34 8.6E−34
RGF vs. PCF 2.5E−34 2.5E−34 8.5E−07 9.9E−34 2.3E−34 2.5E−28

Table 4
Classification results: precision, recall, and f1-score for the planetary gearbox system
across six states.

Metric Method Classes Average

NOR PGF SGF BF RGF PCF

Precision

mvMDLZC 1 1 1 0.96 1 1 0.99
mvMLZC 1 1 1 0.89 1 0.78 0.95
mvMDE 1 0.88 1 0.80 0.79 0.75 0.87
MLZC_R 1 0.91 0.88 1 0.83 0.96 0.93
MLZC_T 1 0.92 0.96 0.89 1 1 0.96
MLZC_A 1 1 0.81 0.87 0.96 0.93 0.93

Recall

mvMDLZC 1 1 0.96 1 1 1 0.99
mvMLZC 1 0.96 0.64 1 1 1 0.93
mvMDE 1 0.56 0.92 0.96 0.88 0.84 0.86
MLZC_R 1 0.84 0.92 0.84 0.96 1 0.93
MLZC_T 1 0.96 0.92 1 0.88 1 0.96
MLZC_A 1 0.92 0.84 0.80 1 1 0.93

F1-score

mvMDLZC 1 1 0.98 0.98 1 1 0.99
mvMLZC 1 0.98 0.78 0.94 1 0.88 0.93
mvMDE 1 0.68 0.96 0.87 0.83 0.79 0.86
MLZC_R 1 0.88 0.90 0.91 0.89 0.98 0.93
MLZC_T 1 0.94 0.94 0.94 0.94 1 0.96
MLZC_A 1 0.96 0.82 0.83 0.98 0.96 0.93

Table 4 provides diagnostic metric results for planetary gearbox
ealth diagnostics using different approaches. Clearly, mvMDLZC
11
Table 5
Accuracy and standard deviation (%) of the diagnostic results with different training
percentages.

Methods Training percentage

20% 30% 40% 50%

LZC_R 47.56 ± 2.23 48.36 ± 2.10 48.53 ± 2.72 49.62 ± 3.00
LZC_T 66.99 ± 1.28 67.90 ± 1.66 67.72 ± 1.49 67.88 ± 1.68
LZC_A 66.04 ± 1.50 65.12 ± 1.42 65.10 ± 2.46 65.62 ± 2.10
mvDE 68.13 ± 2.35 66.23 ± 3.67 66.00 ± 2.49 65.28 ± 2.45
mvLZC 70.35 ± 1.33 70.31 ± 1.53 70.03 ± 1.46 69.65 ± 1.76
mvDLZC 83.15 ± 1.02 83.30 ± 1.19 83.60 ± 1.24 83.87 ± 1.21
MLZC_R 91.58 ± 1.08 92.80 ± 1.05 93.68 ± 1.26 94.23 ± 1.33
MLZC_T 93.74 ± 1.32 94.27 ± 0.97 94.74 ± 0.79 94.67 ± 1.00
MLZC_A 92.00 ± 0.68 92.27 ± 0.70 92.18 ± 1.06 92.73 ± 1.34
mvMDE 84.27 ± 3.31 83.56 ± 4.48 82.56 ± 3.79 81.10 ± 2.86
mvMLZC 93.16 ± 1.94 94.30 ± 1.05 95.00 ± 0.59 96.07 ± 0.79
mvMDLZC 98.16 ± 0.73 98.27 ± 0.62 98.36 ± 0.57 98.42 ± 0.79

stands out with the highest precision, recall, and F1-score, each achiev-
ing a score of 0.99. The overall average F1-scores for mvMDLZC,
mvMLZC, mvMDE, MLZC_R, MLZC_T, and MLZC_A are 0.99, 0.93,
0.86, 0.93, 0.96, and 0.93, respectively. These metrics align with the
recognition performance observed in Fig. 18. The existing multi-source
method, mvMLZC, may struggle to extract information effectively.

Moreover, the t-distributed stochastic neighbor embedding algo-
rithm (t-SNE) was utilized to visualize the extracted features of six
multiscale-based methods in a two-dimensional space, as depicted in
Fig. 19. Fig. 19(a) demonstrates the effectiveness of the mvMDLZC
method, where each class exhibits a distinct class center and no over-
lapping between classes. This clear separation makes it easier for the
classifier to classify the different fault conditions accurately. On the
other hand, Fig. 19(b) shows the visualization of features extracted
by mvMLZC, indicating different class centers for each fault condition.
However, there is a drawback of overlapping between two classes,
which may pose challenges for classification. In contrast, Fig. 19(d), (e),
and (f) depict the visualization results of the univariate LZC methods,
revealing uncertain class centers and difficulty for SVM to classify
different faults accurately. These findings highlight the effectiveness
of multichannel data analysis in achieving better fault classification
results.

Overall, these findings emphasize the effectiveness of the proposed
mvMDLZC in integrating information from multiple channels, lead-
ing to enhanced recognition performance in the context of health
diagnostics with multichannel data.

4.3. Diagnosis performance under challenges

4.3.1. Fault diagnosis with small sample
To evaluate the performance of the proposed method under the

constraint of a small sample size, a comparative analysis was conducted
using different proportions of samples for training. The case study II
data was utilized for this purpose. The selected proportions included
20%, 30%, 40%, and 50% of the samples for training, while the remain-
ing samples were used for testing. This process was repeated 20 times
to account for randomness, and the average recognition rates were
calculated. It is noted that SVM was used for classification, following
the same procedure as in previous case studies. The classification results
for different methods and varying proportions of the training set are
presented in Table 5. Furthermore, to provide a visual representation
of the diagnostic accuracies of the multiscale-based methods at different
training percentages, a graph (Fig. 20) was plotted, which showcases
the performance trends of different methods.

Table 5 and Fig. 20 clearly demonstrate that the proposed
mvMDLZC method outperforms the other methods in fault diagnosis,
consistently achieving recognition rates above 98%. Even with only

20% of training samples, the proposed mvMDLZC method achieves
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Fig. 18. Confusion matrix for (a) mvMDLZC, (b) mvMLZC, (c) mvMDE, (d) MLZC_R, (e) MLZC_T, and (f) MLZC_A.
Fig. 19. Feature visualization via t-SNE for six multiscale-based methods: (a) mvMDLZC, (b) mvMLZC, (c) mvMDE, (d) MLZC_R, (e) MLZC_T, and (f) MLZC_A.
remarkable recognition rate of 98% or higher. Furthermore, the
ow standard deviation of the diagnostic results, remaining below 1%,
12
emphasizes the exceptional stability of the mvMDLZC approach, even
under challenging conditions with limited training data.
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Fig. 20. Diagnostic accuracies for multiscale methods with different training
percentage.

Fig. 21. Diagnostic accuracies for multiscale methods under different degrees of noise
in signals.

From Fig. 20, overall, the multivariate methods, such as mvMDLZC
and the existing mvMLZC, clearly outperform the single-source meth-
ods (MLZC_R, MLZC_T, and MLZC_A), in terms of diagnostic accuracy.
This further highlights the advantage of utilizing multiple data sources
for fault diagnosis. The superior performance of the multivariate meth-
ods reinforces the effectiveness of considering multiple channels or
sources of information in fault diagnosis tasks. By incorporating in-
formation from different sources, such as the radial, tangential, and
axial directions, the multivariate methods demonstrate enhanced dis-
criminatory power and improved fault classification accuracy. These
results emphasize the importance of leveraging the synergistic informa-
tion present in multichannel data for more accurate and reliable fault
diagnosis.

4.3.2. Robustness against noises
In practical industrial applications, the influence of noise on di-

agnosis performance is substantial. To evaluate the robustness of the
proposed mvMDLZC method against noise, we introduced varying de-
grees of white Gaussian noise into the signals. The diagnostic outcomes
under different noise levels are depicted in Fig. 21.

Fig. 21 clearly demonstrates the robustness of the proposed
mvMDLZC method against noise in real industrial applications.

The decrease in SNR naturally leads to reduced diagnostic accuracy.
However, the mvMDLZC consistently outperforms other methods, in-
cluding mvMLZC, MLZC_R, MLZC_T, MLZC_A, and mvMDE, in terms
of diagnosis accuracy across different levels of white Gaussian noise.
Remarkably, even as SNR diminishes, the average identification accu-
racies of mvMDLZC remain high, reaching 96% at an SNR of 8 dB. This
resilience can be attributed to the fusion of multichannel data, which
allows mvMDLZC to leverage comprehensive information for precise
fault diagnosis, even under challenging low SNR conditions.
13
Fig. 22. Visualization of mvMDLZC features under different levels of noise: (a)–(d)
represent vibration signals under 14 dB, 12 dB, 10 dB, 8 dB noise, respectively.

To gain deeper insights into the robustness of the mvMDLZC method
against noise, Fig. 22 offers visualizations of the features at different
SNR levels (14 dB, 12 dB, 10 dB, and 8 dB). Each color represents a
specific health state of the gearbox.

From Fig. 22(a), at 14 dB SNR, the feature points corresponding
to different states exhibit minimal overlap, signifying a high degree
of discrimination between the classes. Nonetheless, the SGF and BF
states display some similarity in their features, suggesting an inherent
resemblance in their vibration characteristics. Even at 8 dB, each class
maintains a distinct class center without significant overlap between
feature points. This demonstrates that the extracted features from the
mvMDLZC method remain discriminative and informative, enabling
effective differentiation between different health states even in the
presence of low SNR.

In summary, these results emphasize the robustness and effective-
ness of the proposed mvMDLZC method in addressing noise in real
industrial applications. It consistently delivers superior diagnostic per-
formance, even under challenging noisy conditions. Moreover, the
feature visualizations further validate the discriminative power of the
extracted features, highlighting the method’s capacity to effectively
distinguish different health states.

5. Conclusion

This paper introduces the concept of multivariate multiscale dis-
persion Lempel–Ziv complexity (mvMDLZC) as an extension of the
univariate LZC method for multichannel systems to extract the fault
features hidden in multi-source information. Through comprehensive
comparative studies employing synthetic and real-world multichannel
datasets, the proposed mvMDLZC approach showcases its superiority
over existing methods. It exhibits excellent performance in fault diag-
nosis of mechanical systems, even in challenging scenarios with noise
and limited sample sizes. The results validate the effectiveness and ro-
bustness of mvMDLZC in recognizing various fault types. The proposed

method contributes to the advancement of LZC-based methods and
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opens up new possibilities for analyzing the complexity of multichannel
systems.

Overall, this work contributes to the advancement of LZC-based
methods by extending their applicability to multichannel data analy-
sis and addressing the limitations of existing approaches. Future re-
search will explore its application in other domains and further in-
vestigate its capabilities in signal analysis, potentially incorporating
advanced multiscale methods and neural networks, aiming to con-
tribute to advancements in multi-source information fusion and fault
detection.
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