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Abstract— As a nonlinear measure, sample entropy (SE) can
be considered a suitable parameter for characterizing rolling ele-
ment bearing health status by measuring complexity of vibration
signals. However, in continuous monitoring scenario under noisy
condition, all components of a multicomponent bearing signal
are not equally sensitive toward change of SE value. As a conse-
quence, a direct application of SE results in inefficient early fault
warning and inability to differentiate among different fault types.
To deal with this problem, instead of direct utilization of a whole
vibration signal, its principal component (PC) sensitive to SE
calculation is separated with the help of continuously adjustable
parameterized tunable Q factor wavelet transform (TQWT).
Since TQWT uses an oscillation-based bearing PC separation
scheme for SE calculation, the newly proposed measure is termed
as oscillatory sample entropy (OSE). Due to the biasness of SE
algorithm toward bearing PC, the proposed OSE can anticipate
theoretical concept of complexity change more efficiently with
the change of bearing health. Two experimental case studies
have shown that proposed OSE can not only overcome the
limitations of SE algorithm but also demonstrate superiority over
approximate entropy (AE) and fuzzy entropy (FE) for continuous
monitoring of bearing health.

Index Terms— Continuous health monitoring, nonlinear mea-
sure, sample entropy (SE), tunable Q-factor wavelet transform
(TQWT).

I. INTRODUCTION

OLLING element bearings are susceptible to various

kinds of faults during industrial application due to their
exposure to the harsh working environment such as simultane-
ous influence of heat, corrosion, extreme load, and so on [1].
Being an integral part of the modern machineries, bearing
failures may result in large financial losses or even catastrophic
scenario [2]. Hence, prognosis of rolling element bearing
health has drawn particular attention from the researchers in
the past few years. In this context, vibration-based condition
monitoring of rolling element bearing is the most effective
strategy due to high sensitivity of vibration signals toward
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bearing health and convenience of data collection with the
help of accelerometer [3].

This monitoring of rolling element bearing health with an
efficient measure is a major aspect of the prognosis operation.
In this regard, early detection of bearing fault is the most
important trait of the measure employed for its health mon-
itoring [4]. Hence, it can be realized that construction of a
successful bearing health monitoring index is the main theme
of bearing health prognosis. As fault information of bearing
is mostly reflected by singular points of abrupt changing
signals, detecting dynamic change of vibration signals in
time is important for early fault identification [5]. Moreover,
in real life applications, vibration signals collected from rolling
element bearings are highly nonstationary and nonlinear in
nature due to the association of external force, friction, envi-
ronmental noise, and so on [6]. As a result, construction
of nonlinear health monitoring indices for rolling element
bearing has drawn particular attention among the researchers.
In this context, different nonlinear dynamic measures such as
Lyapunov exponent [7], correlation dimension [8], symbolic
dynamics [9] have been used by different researchers. How-
ever, these methods are dependent on the quantification of
certain aspects in the phase space which is inefficient in terms
of calculation. In this context, entropy-based measures play
a significant role in characterizing a time series continuously
in a dynamic process [10], [11]. The concept of information
entropy was laid by Shannon in 1948 [12]. Following his con-
cept, aiming at solving the short length problem of the entropy
calculation of a finite time series, Pincus proposed approximate
entropy (ApEn) [13]. However, one of the major disadvantages
of ApEn is its self-matching limitation. Later, Bandt and
Pompe [14] proposed permutation entropy (PE) to address the
self-matching limitation of ApEn. However, PE cannot classify
well defined pattern of a particular design [6].

Free from the weaknesses of already mentioned entropy
methods, sample entropy (SE) is a suitable alternative for con-
tinuous monitoring of bearing health [13]. However, a direct
application of SE suffers from contamination by surrounding
noise. A high value of SE can either represent the contami-
nation by heavy noise or inception of a fault. This problem is
more prominent at the initial stage of fault inception when the
amplitudes of fault impulses are relatively small. A high value
of SE can either interpret the deterioration of bearing health
or heavy noise. In this regard, an improved version of SE is
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proposed based on the multiscale analysis [15]. Nevertheless,
Multiscale sample entropy (MSE) is mostly dependent on the
use of a suitable classifier for performing health monitoring
of a bearing. In this context, classifier efficiency depends on
past data for training relevant algorithms [16], [17]. Hence,
this approach requires additional storage facility for these past
data and subjected to proper data management for bearing
operating under different working conditions. Moreover, in
conventional SE-based bearing health monitoring process,
additional operation such as manual inspection or envelope
spectrum analysis is needed for identifying the type of incepted
fault. However, this type of approach is dependent on the
prior knowledge about bearing specification in order to know
relevant bearing fault frequency. Hence, this is not suitable in a
continuous monitoring process specially in the real-life indus-
trial application where bearings with different specifications
are utilized. Considering the aforementioned limitations of SE
in continuous monitoring of rolling element bearing health,
two main contributions of this manuscript are as follows.

1) A new variant of SE algorithm is designed which can
detect the fault at an early point of inception.

2) Automatic identification of unknown bearing fault type
has been achieved during continuous health monitoring
process.

Before analyzing a bearing signal by any entropy algorithm,
it is required to extract the most effective part of that sig-
nal. As a result, researchers have applied SE for condition
monitoring of rolling element bearing after preprocessing the
bearing signal with the help of different preprocessing tech-
niques [18]-[20]. However, conventional wavelet-based pre-
processing techniques are dependent on a fixed scale of a base
function in order to perform the denoising operation which is
not very suitable for applying in the continuous monitoring
operation [21]. Alternatively, adaptive decomposition-based
methods, such as empirical mode decomposition (EMD), local
mean decomposition (LMD), and so on, suffer from mode
mixing problem [22]-[24]. Even though utilization of addi-
tional white noise can address the mode mixing problem, they
are not suitable solution due to their dependence on the prede-
fined parameters [23], [25], [26]. In the context of the above
discussions, tunable Q factor wavelet transform (TQWT) is
a relatively new signal preprocessing technique proposed by
Selesnick [27]. Being a continuously tunable parameterized
method, a signal can be decomposed into high and low
oscillatory component with the help of TQWT. As a result,
it is suitable for a process requiring continuous monitoring.
Recently, TQWT has drawn considerable attention among
researchers regarding bearing fault diagnosis [28]-[34].

On the basis of all above, in this article, Section II describes
limitations of original SE algorithm in continuous monitoring
of bearing health with the help of numerical simulated signals.
In Section III, firstly, biasness of SE toward bearing principal
component (PC) is studied. Then, in order to utilize the
advantages of this finding, in lieu of calculating the original
SE algorithm directly for bearing health monitoring, TQWT is
implemented to separate corresponding bearing PC for calcu-
lating its SE value. Due to the dependence on oscillation-based
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PC separation scheme, the proposed measure is termed as
oscillatory sample entropy (OSE). Experimental validation has
been done in Section IV. Lastly, Section V discusses the
conclusions of this article.

II. THEORY OF SE AND ITS LIMITATIONS IN CONTINUOUS
MONITORING OF BEARING HEALTH

SE was proposed by Richman and Moorman [13] as a
measure of complexity computation of a time series. Low SE
value infers lower irregularity of a time domain signal and
vice versa.

A. Theory of SE Algorithm

Mathematical theory of SE is provided in detail in [13]. For
a time series S = {S(1),...,8(@),...,S(N)} of length N,
detailed steps of calculating SE are as follows.

Step 1: m embedding vectors are constructed according to
the Taken’s theorem as shown in the following equation:

Slm:{Si,Si+1,...,Si+,1171}, 1SLSN_m' (1)

Step 2: If two vectors S;" and S7' are equal where i # j,
then (S;", S7') are termed as m-dimensional matched vector
pair. The total number of matched vector pairs are considered
as n™ for embedding dimension m.

Step 3: Steps 1 and 2 are repeated for embedding dimension
m = m + 1 which is resulted in the n"*! number of matched
vector pairs.

Step 4: SE is calculated based on the following equation:

nm+l

n m

SE(S,m) = —1n (2)

B. Limitations of SE in Continuous Monitoring
of Bearing Health

Limitations of the SE algorithm in relevance to monitoring
of bearing health in a continuous manner are studied in this
section with the help of numerical simulated signals.

Vibration signals corresponding to inner race fault, outer
race fault, and rolling element fault are simulated by con-
sidering the effect of bearing geometry, shaft speed, load, and
damping nature of impulses generated by fault [35]. Periodical
impulses generated in the vibration signal due to the inception
of fault can be modeled as

X,(1) = [ Z dod(t — kTO)] xe Dt (3)

k=—o

+
Xi(t) = K Z dié(t—kTi)) *q(2m fr1) * p(27rfrt)} e D!
k=—o
)

where X (1), X;(t), respectively, indicates the fault impulses
generated by bearing outer race and inner race fault. dy and d;,
respectively, indicates the amplitude of impulses for outer and
inner race fault. 7y and 7; represents reciprocal fault character-
istic values corresponding to bearing outer race and inner race,
respectively. Radial load distribution of the rolling element is
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represented by ¢ and f, represents the shaft rotating frequency.
Exponential decaying nature of bearing fault impulses are
obtained by e~P" where D is the damping coefficient. k
represents the number of impulses and J represents bearing
fault impulse function.

In this article, shaft rotating speed f; is considered as 50 Hz.
Values of Ty and 7; are considered as 0.0049 and 0.0034,
respectively. Simulated signals are generated at a sampling
frequency of 20 480 Hz. In this article, values of parameters
related to original SE calculation are taken according to [36].
Two key limitations of original SE algorithm in continuous
monitoring of bearing health are studied in this section below.

1) Under Heavy Noise, Original SE Algorithm Is Insensitive
to Bearing Fault Frequency: In an ideal scenario, vibration
signals collected from healthy bearing operating without influ-
ence of any additional excitement should have an SE value 0.
However, in real application, vibration signals collected from
rolling element bearing contain undesired frequency com-
ponents such as frequency component related to unbalance,
misalignment, rotation of rolling element, and so on. Because
of the presence of these extra periodic components in bear-
ing vibration signal, value of corresponding SE algorithm
increases to more than 0. Also, during vibration data collection
from a bearing shaft, it is almost impossible to avoid the
association of random noise components. As a result, SE value
of bearing vibration signal gets increased further. In this way,
under extreme noisy conditions, SE value of a vibration signal
collected from a normal healthy bearing approaches to its
upper limit.

In this context, after the inception of fault in a bearing,
change of SE value become insignificant due to the addition of
corresponding fault frequency components. This is caused by
negligible amount of fault frequency components in compare
to that of environmental noise. Numerically simulated signals
have been used in order to understand this phenomenon.
A representative signal corresponding to a healthy bearing can
be modeled by (5) as follows [10], [37]:

S(t) =0.05xsin(2x 7 * Fyxt) +0.10 xsin(2 x 7 * Fy * 1)
4+ 0.325 % sin(2 * 7 * Fgpror *t) (5)

where Fy, Fn, Fgpror, respectively, represent the frequency
components corresponding to unbalance, misalignment, and
passing of bearing rolling element periodically in relation to
accelerometer fixing point on the casing. Values of F,, Fy,,
and Fppror are considered as 30, 60, and 41 Hz, respectively.
The association of extra environmental noise n(t) in the
vibration data collection process has been taken into account
while simulating the vibration signal corresponding to healthy
condition as shown in the following equation:

SHeathy () = S(#) + n(t). (6)

During continuous operation of bearing, sudden emergence
of faults adds some additional frequencies to the collected
vibration data. In this context, firstly SE value of Syeainy (f)
is calculated. Then, for understanding the change of SE due
to occurrence of bearing fault, fault impulse generated by (3)
or (4) can be added with the simulated healthy bearing signal.

3518014

TABLE I
CHANGE OF SE VALUES UNDER DIFFERENT HEALTH CONDITION

Signal Signal time series SE
S@) W\MM 0.0708
SHealthy (t) = 1 7855
SHealthy(t)+X(; ® =1.7855
SHealthy (t) + Xi (t)

In order to simulate extremely noisy condition, Gaussian noise
equivalent to —20 dB is considered. Corresponding SE values
are presented in Table I.

From Table I, it can be observed that a healthy bearing
signal without any noise has relatively small value of SE.
However, with the addition of noise, its value becomes very
high which remains very similar even after the addition of
fault impulses in the signal. Hence, it can be said that under
extreme noisy condition, original SE algorithm is insensitive
toward the bearing fault frequency.

2) SE Cannot Identify Among Different Fault Types During
Continuous Monitoring Process: The entropy value of a
bearing signal time series is dependent on the amount of
frequency components present in it [10], [37], [38]. During
normal operation of a healthy bearing, contact pressure among
different mating parts of a bearing remain unchanged. With the
inception of fault in a bearing, corresponding contact pressure
between relevant mating parts changes. This fluctuation in the
contact pressure results in amplitude and frequency modula-
tion which in turn also generates more frequency peaks and
their harmonics [39].

When an outer race fault occurs in a bearing, real area
of contact between mating parts becomes smaller due to the
subtraction of size of the fault from nominal contact area.
This results in the variation of the contact pressure between
the fixed outer race fault and the rolling element. As a result,
frequency modulation happens [39]. With the progression of
fault, fluctuations of contact pressure become more intensified
and related frequency modulation become more and more
strong. This strengthening of the frequency modulation causes
more and more frequency peaks and their harmonics in the
frequency domain of the signal. Hence, it is expected that
value of SE will increase with the progression of outer race
fault.

On the contrary, for inner race fault, nonuniform load
distribution, as shown in Fig. 1, caused by radial load plays a
significant role in its entropy calculation.

As seen in Fig. 1, due to the influence of radial load, the
point of contact expands to an ellipse. The maximum contact
pressure P,y is located at the center of the ellipse and can be
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Fig. 1. Nonlinear load distribution under radial load.

expressed as follows:
F
Prax = 15; (7)

where F represents the pressing force among the mating
component with the fault and A represents actual contact
area. Considering the incepted defect as a circle of radius
“r,” the corresponding fault area can be written as zr>.
Hence, with the increase in the fault size by “nr” amount,
the area corresponding to the fault increases by “n’r2.” This
phenomenon results in the decrease A in (7). As a result, value
of “Pnax’ increases swiftly and a low frequency modulation
is generated in the signal. With the strengthening of the low
frequency modulation, irregularity starts to decrease in the
time series and a pattern of regularity starts to form. As a
result, SE values are expected to decrease with the progression
of fault.

In order to assess the ability of SE in differentiating between
outer race and inner race faults in a continuous monitoring
process, a synthetic model of bearing fault inception is gen-
erated with the help of signals mentioned in (3) and (4). The
synthetic model can be expressed by (8) and (9) as follows [6]:

XSynJ) (t)

X
> 5x6 —kTo):| xe P 051 <t <061

Lk=—

X
- ZlO*&(z—kTo)]*eD’; L12<1<122 (8)

Lk=—

o
> 15x6( —kTO)] xe P 174 <1 <1.84
Lk=—o

XsynJ (t)

+00
( > 5w0(t— kT[)) * q (27 fot) * p(27rf,t)i| xe Dl

k=—00

0.51 <1 <0.61
[/ +oo -

B (Z 10*5(t—kTi))*q(27rf,t)*p(27rf,t) xe Pl

k=—00

112 <t <122

-
(Z 15*5(t—kT,))*q(27rf,t)*p(27rf,t) xe Dt

k=—00

1.74 <t < 1.84.

©)
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Fig. 2. Synthetic bearing fault model. (a) Outer race fault. (b) Inner race

fault.

In the aforementioned discussion, it has been mentioned that
SE algorithm cannot differentiate between healthy and faulty
conditions under heavy noise; hence, for understanding this
weakness, the associated noise level has been kept relatively
low (0 dB) with this signal model, as shown in Fig. 2.

A sliding window having data overlapping 75% at a step
length of 2 s is used to generate the samples. SE is calculated
for both of outer and inner race fault model as shown in
Fig. 2 and the calculation result is shown in Fig. 3 as follows.

From Fig. 3, it can be seen that change of SE value with
inner and outer race fault follows the same trend toward
the downward direction. Hence, it is difficult to distinguish
among inner and outer race faults in the continuous monitoring
operation by SE.

III. OSCILLATORY SAMPLE ENTROPY

Complete elimination of imbalance and misalignment from
a rotor bearing system is a difficult task. Specially, this is
more difficult in a large rotating machinery. Hence, the rotating
frequency is always present in the vibration data collected
from a large rotating machine even if it is operating in a
healthy condition. In this context, shaft rotating frequency
can be called as PC. Due to the emergence of a fault in
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Fig. 3. Change of SE value with (a) outer and (b) inner race fault.

a bearing, corresponding fault-related frequencies are added
in it. In addition, the presence of a bearing fault increases
the overall vibration of a rotor bearing system, and as a
consequence, it also strengthens the bearing PC. As a result,
it can be inferred that in terms of energy and amplitude, signal
component corresponding to bearing PC is more superior in
comparison to the signal component corresponding to bearing
fault impulses. In a nutshell, it can be said that bearing PC is
the dominating component in a vibration signal collected from
rolling element bearing. On the basis of this idea, in this arti-
cle, instead of applying the original SE algorithm directly on
the bearing signal, at first, the relationship between the bearing
PC and SE algorithm is found out. Then, oscillatory SE has
been calculated with the help of following two phases. In the
first phase, signal component corresponding to bearing PC is
separated by TQWT. In the following phase, SE algorithm is
utilized to quantify the separated bearing PC as a measure of
bearing health monitoring.

In the subsections, relationship between bearing PC and SE
algorithms, rationale of oscillation-dependent PC separation
scheme, theory of oscillation-dependent PC separation, and
lastly, calculation procedure of OSE is discussed gradually.

A. Relationship Between Bearing PC and SE Algorithms

In order to study the relationship between bearing PC and
SE algorithms, three simulated signals S;, S, S3 have been

3518014
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Energy ratio (§)
Fig. 4. Biasness of SE toward bearing PC.
generated as follows:
Si1(1) = Xo(t) +n(r) (10)
S>(t) = Sin(2x f,1) (11)
S3(t) = S1(1) + S2(1). (12)

In real-life application, bearing fault impulses are associated
with noise. Hence, S;(¢) represents the simulated bearing
fault impulse X,(r) with added noise n(t). n(t) is consid-
ered Gaussian noise of zero mean and unit variance. S,(t)
represents bearing PC simulated with shaft rotating frequency
fr- S3(¢) represents the summation of S;(¢) and Sy(¢). At the
beginning, SE values for both S;(¢) and S,(¢) are calculated.
Then, by increasing the amplitude of S,(r), energy ratio
between S;(r) and S,(¢r) is gradually increased, and at the
same time SE value for the corresponding S3(¢) is calculated.
Energy ratio (¢) between S;(t) and S,(z) can be defined as
follows:

152112
ISill,

Relevant simulation results are shown in Fig. 4.

From Fig. 4, it can be seen that with the increase in the
energy and amplitude of the bearing PC, the value of SE of
the total signal gets more and more drawn toward it instead
of bearing fault impulses. Based on this observation, it can be
said that SE is biased toward bearing PC.

On the basis of this finding, it is expected that instead of
direct application of SE algorithm on the bearing signal, the
SE calculation of bearing PC can provide more efficient results
for continuous monitoring of bearing health. Hence, aiming
at utilizing the benefits of this finding, in this article, firstly
bearing PC is separated from the bearing signal and then its SE
value is calculated for performing continuous monitoring of
bearing health. Traditional methods, such as wavelet transform
or bandpass filters, are not sufficient for separating the PC
from a rolling element bearing signal due to their inability to
perform efficiently in a continuous monitoring process. Hence,
a relatively new method based on TQWT for separating the
signal components according their oscillatory behavior is used
in this article. The major advantage of TQWT over traditional
methods is the continuously adjustable nature of its parameters

¢ =log

13)
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Fig. 5. Simulated key bearing signal components. (a) Bearing PC. (b) Bearing
fault impulses.

which makes it suitable for continuous monitoring of bearing
health.

B. Rationale of Oscillation-Dependent
PC Separation Scheme

A rolling element bearing vibration signal can contain
both low oscillatory and high oscillatory signal components.
Simulation models have been used to understand this phenom-
enon. Two key simulated signal components corresponding to
bearing PC and fault impulses are shown in Fig. 5.

From Fig. 5, it can be said that a bearing signal component
containing the fault impulses can be considered low oscillatory
due to exponentially decaying nature of fault impulses while
a bearing PC can be considered high oscillatory due to its less
spiky continuously oscillating nature. Hence, it is evident that
high oscillatory component of a bearing signal can be clearly
distinguished from its low oscillatory component. In this
context, theoretically, after decomposing by TQWT, bearing
PC should lie within high oscillatory component.

As a sparse signal decomposition technique, TQWT is able
to separate a signal into its low and high oscillatory compo-
nents. The decomposition process of TQWT is dependent on
Q factor of its wavelet bases which is defined as follows:

Fe

0= (14)
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Fig. 6. Dual-channel filters. (a) Decomposition filter. (b) Synthesis filter.

where F. represents central frequency and W represents pulse
bandwidth.

TQWT is applied with the help of a two-channel filter bank.
This filter bank is designed by low pass scaling (relevant para-
meter ) as well as high pass scaling (relevant parameter f3).
The correlation of a and £ can be established with Q factor
with the help of another parameter termed as redundancy “r”
as shown in the following equation:

o=1-L g2
r 0+1

Low pass filter Hy(w) and high pass filter Hj(w) can,

respectively, be represented by (16) and (17) as follows:

s)

1, lo| < (1= p)x
—1
Ho(w) = e(‘”:iﬁTl)”), (- <o <ar
_O, ot <|w| <m
(16)
0, lol = (1= p)m
Hi(w) = e(%), A-pr<w<ar | A7)
RE ar <|o| <m
where 6 infers a function such as A(v) = 0.5 +

cosv)(2 —cosv)'/?, |v| < z. Equations (15)—(17) can be
used to parametrize TQWT with the help of Q factor and
redundancy r. Fig. 6 shows the application of TQWT with
the help of two channel filter bank.

The maximum possible decomposition level number, L,x,
can be calculated by (18) [27] as follows:

L log(N/4(Q + 1)
M log((Q + 1)/((Q + 1) — 2))

where |-| infers a rounding operation and the number of data
points are represented by N. “L + 1” number of subbands are
generated after applying an “L” stage decomposition.

(18)
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Given a bearing signal “Xpearing” comprised of both high
oscillatory component “Xppearing)” and low oscillatory compo-
nent “Xjpearing)” such as

Xbearing = Xh(bearing) + Xi(bearing) - (19)

In this research, it is aimed to decompose Xpeaing 1NtO
Xh(bearing) aNd X(bearing)» Tespectively, by morphological com-
ponent analysis (MCA) [40].

Given that Q factor corresponding to low oscillatory com-
ponent (Q;) and Q factor corresponding to high oscillatory
component (Qy) are to be utilized for two different TQWTs
named TQWT1 and TQWT2, respectively, (20) gives the
aimed decomposition with the help of a constrained optimiza-
tion method as follows:

i+l Jo+1
arg,, minZinwa —i—Zi;-Hw;H
w1, Wy = J J = J J I (20)

Xvearing = TQWT1 ™! (w1) + TQWT2™ (w3)

where A; and A, are regularization parameter and subsidiary
bands of TQWT; (i = 1, 2) are represented by w;;.

After obtaining the values of w; and w,, we can find
Xh(bearing) ANd X|(bearing) as follows:

Xh(bearing) = TQWTI ! (U)])

) 21
Xi(bearing) = TQWT2 (wy).

In real industrial application, bearing signals are associated
with random noise present in the surrounding environment.
Hence, (19) can be written as follows:

Xbearing = Xh(bearing) + Xi(bearing) noise. (22)

Equation (23) is used for solving the stated problem
Jitl

arg,,, ,, Min|| Xoearing — @101 — @2z | + D Ajf|wi; |,
j=1
Jatl

+ D Aajfway ], (23)

j=1

where inverse TQWT is represented by ¢; and ¢,, respectively.
Power of the signals can be used to determine the values of
A1 and 4, [29].

C. OSE Calculation for Continuous Monitoring of Rolling
Element Bearing Health

Continuous health monitoring of a bearing infers that the
vibration responses are recorded at a specific time interval
and each recording is investigated at a time when the total
monitoring work is achieved by adding the subsequent analysis
result altogether. In this context, referring to the original
definition of SE, OSE can be calculated using following steps:

Step 1: For a particular time point R, a signal xtfearing is
obtained from a rolling element bearing. R can be defined as
follows:

R=Ry+ Ar (24)

3518014

' ¥ ¥

| » 1
i Low escillatory Decomposition by Tunable Q High oscillatory H
H component Factor Way elet‘ Transform component !
i (TQWT) R i
H xﬂ(bmrim,-) x"r(h aring) !

Construction of embedding vectors
K i —iyk i Py o F tism-lyy
hibearing) — \Vhibearing)> “Ch{bearing) > "> % i bearing) !

]

Calculate the distance between

R i R
Xibearing) & Xiipearing)

Calculate number of matched vector
pair n”
from their calculated distance for dimension
“?

Calculate number of matched vector
pairn™
from their calculated distance for dimension
« »
m+1

I

Oscillatory sample entropy
-l

O?Ex’g”"“ Xt m)=—1In
8 (Xiearing: ) =

0"

Fig. 7. Framework of OSE calculation.

where Ry represents the beginning moment of data collection
and Ar represents the constant time delay between each
recording.

Step 2: The high oscillatory component xlf(beamg) is
extracted from x5 ;...

Step 3: Following Taken’s embedding theorem, embedding
vectors from xlf(beamg) with dimension m are constructed as
follows:

R_(i+1)

Ri — ) R R_(i+m—1)
xh(bearing) - {xh(bearing)7 xh(bearing)? A },

’ xh(bearing)

1<i<N-m (25

where “N” is the length of separated xlf(beamg).

Step 4: If two vectors xlﬁg’earmg) and x&g‘éaring) are equal
where i # j, then {xlﬁgiearing),xlﬁgémng)} can be called as an
“m” dimensional matched pair vector. Let us consider that
n™ represents the total number of “m”-dimensional matched
vector pairs.

Step 5: Steps 3 and 4 are repeated for dimension “m =
m + 17 and then “n"*!” number of matched vector pairs are
obtained for dimension “m + 1.”

Step 6: OSE for x{ ;... OSE*w is calculated by the ratio
of “n™*1” to “n™” as follows:

nm+l

n m

OSEX&MM (xlf(bearing) ’ m) =—In (26)

Fig. 7 shows the flowchart for calculating the OSE.

IV. PARAMETER SELECTION OF OSE
A. Parameters Related to TOQWT

Calculation of OSE is dependent on three parameters related
to TQWT [33]. The TQWT-related parameters are “Q,” “r,”
and “Ly.x.” As described in Section III-B, “Q” represents
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TABLE II

VALUES OF DIFFERENT SPARSITY INDICES UNDER VARYING
OSCILLATORY CONDITIONS

Signal K NE RSI GI
\ 32.730  2.583  267.56  0.924
\ 16.475 1.9902 87.6705 0.8512
I\/\/\/\N\/\NW 8.2594 1.3419 10.5409 0.7112
100 : —
— 80r ]
R
S 60} 1
=TH
g
= 40r 1
Q
20 ]
O 1 1 1 1
K GI RSI NE

Fig. 8.  Sensitiveness of sparsity indices toward the oscillatory nature of
bearing signal.

I3}

the oscillation level of the signal component, “r” repre-
sents the redundancy, and “Ly,y” represents the number of
decomposition level. Among the three parameters described
above, “r” and “L” can be chosen from literature. In real-life
practical situation, “r” is suggested to choose more than 1.
However, a higher value of “r” will increase the computational
cost [41], [42]. Considering these, the value of “r” in this
article is chosen as 3. Also, “Lp,x” is calculated by (18) [27].

Two most important parameters corresponding to the
TQWT-based decompositions are the Q factors [43]. Con-
sidering the transient nature of bearing fault impulses value
of low Q factor, “Q;” should be as small as possible. Since
“Q” cannot be less than 1, in this research, the value
of “Q,” is selected as 1. However, the selection of high
Q factor “Qy” is a data-dependent criterion. Hence, it is
required to achieve suitable optimization for that. Considering
the ability of sparsity indices in quantifying the peakedness
corresponding to the low oscillatory and high oscillatory signal
components, they are a suitable criterion for achieving the
aforementioned decomposition [44], [45]. As a result, aiming
at selecting the suitable “Qy,” an optimization study among
signals of varying oscillatory level has been conducted with
the help of representative sparsity indices such as kurtosis (K),
negative entropy (NE), reciprocal smoothness index (RSI), and
gini index (GI). The use of sparsity indices for optimization
purpose is motivated by their ability to characterize the impul-
siveness of a signal [46], [47]. The lower the impulsiveness
of a signal, the higher oscillation level it possesses and vice
versa [48]. Table II represents the values of different sparsity
indices under different oscillation levels.
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Fig. 11. Experimental equipment and schematic of the experimental setup for
the IMS data. (a) Experimental equipment. (b) Sketch of bearing-accelerated
life testing system.

From Table II, it can be seen that with the gradual pro-
gression from low oscillatory to high oscillatory behavior,
values of the corresponding sparsity indices decrease. Hence,
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for comparison purpose among the sparsity indices, the rate
of decrease of different sparsity indices while shifting from
lowest oscillatory to the highest oscillatory, as shown in
Table 1II, is calculated and shown in Fig. 8.

It can be seen from Fig. 8 that rate of change of RSI
with that of oscillatory nature of the bearing signal is the
highest compared to other sparsity indices. Hence, in this
research, RSI is used to perform the optimized selection
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of high oscillatory component “Qy” with the help of the
following equation:

On = argy, min RSI(Qy).

The iteration range for Qy is selected as in [4] and [12],
with an increment rate of each step being 0.5 [29], [47].

27)

B. Data Length Selection

Considering the effect of data length on the SE, in this
section, a study has been conducted under the influence of
different noise levels regarding the selection of data length in
OSE calculation. The fault signal simulated by (3) is used for
this purpose. The result regarding the selection of data length
with OSE calculation is shown in Fig. 9.

From Fig. 9, when the value of the data length is >2048,
the proposed OSE becomes relatively stable under different
levels of noise. Considering the relationship between the
computational cost with the data length, in this research,
2048 is utilized as the length of vibration recordings.

C. Selection of the Embedding Dimension (m)

As described in (24), the value of OSE is dependent on the
value of embedding dimension (m). Hence, in this section,
a study has been conducted regarding the selection of suitable
value of embedding dimension (). For the chosen data length
2048, as discussed in Section IV-B, OSE value is calculated for
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Fig. 15. Sketch of bearing-accelerated life test system.

the signal simulated by (3) under different sampling frequency,
as shown in Fig. 10.

From Fig. 10, it can be found that values for OSE under dif-
ferent sampling rates are stable until m = 5. With the increase
in m-value > 5, the values of OSE under different sampling
rates become more and more scattered. This phenomenon may
be caused by the occurrence of information loss due to the
increase in the embedding dimension (m) as discussed in [49]
and [50]. Moreover, very large value of “m” is also unfavorable
in regards to computational complexity. Additionally, a too
large value of “m” will require a very long time series which is
difficult in practical application. Considering all these aspects,
in this article, embedding dimension “m” is chosen as 5.

V. EXPERIMENTAL VERIFICATION

Two different experimental studies are utilized to verify
the performance of the proposed OSE. Performance of the
proposed OSE has been compared with SE, approximate
entropy (AE), and fuzzy entropy (FE).

A. Experimental Case Study-1

In order to verify the effectiveness of the proposed OSE,
bearing run to failure experimental data from Center for Intel-
ligent Maintenance Systems (IMS), University of Cincinnati,
was used [51]. A schematic of the experimental setup for the
data collection is shown in Fig. 11.

In this experiment, four Rexnord ZA-2115 bearings are
mounted on the support shaft. Data were collected at a rotating
speed of 2000 rpm. Bearings were kept lubricated using the
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collect the debris from the oil. When the amount of debris
crosses a certain limit, the test is stopped and the bearing is
observed. A total of 984 recording files were collected. Upon
the inspection of the bearing at the end of data collection,

force mechanism. A radial load of 6000 lbs was used on the
bearings. Sampling frequency of the data collection was kept
at 20 480 Hz. Data are collected at an interval of 10 min
between each recording. The magnetic plug was used to
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an outer race fault is found. Four indices, i.e., SE, AE, FE,
and OSE, as described before have been used to monitor the
health of the bearing by collected vibration data.

It is assumed that bearing runs in a normal condition
from file number 1 to file number 200. Based on this, the
threshold for monitoring the bearing health is designed by
cumulative sum (CUSUM)-based processing of the estimation
error [52], [53]. With the help of the CUSUM method, the
deviation of monitored value is accumulated from the set point
of control variable for all samples. Change of different indices
and their corresponding CUSUM-based monitoring result is
shown in Fig. 12.

From Fig. 12, it can be seen that time to start point (TSP)
of the fault for SE, AE, FE, and OSE are, respectively, at file
numbers 559, 561, 703, and 533, respectively. In order to study
the effectiveness of the proposed OSE, envelope spectrum
analysis has been carried out at file number 533. Additionally,
in order to confirm the design of threshold, envelope spectrum
analysis has been carried out at file number 200. According
to the bearing specification presented with the data file, ball
passing frequency for outer race fault (BPFO) is 236 Hz. The
result of the envelope spectrum is shown in Fig. 13.

From Fig. 13, it can be seen that envelope spectrum at
file number 533 contains the BPFO peak. However, no BPFO
peak is located in the envelope spectrum of file number 200.
This infers that designing of the threshold is correct and OSE
can detect the fault accurately. Considering the irreversible
nature of bearing health degradation, it can be said that OSE
detects the presence of faults 260, 280, and 1700 min earlier
than SE, AE, and FE, respectively. Moreover, it can be seen
that values of SE and FE decreases with the propagation of
the fault which is contradictory to the theoretical concept
discussed in Section II-B. In this context, both OSE and AE
demonstrate the expected trend with the progression of fault.
However, similar to SE and FE, values of AE also provide
false alarm. On the contrary, OSE demonstrates consistent
monitoring results all along the monitoring period.

B. Experimental Case Study-2

Accelerated bearing life test (ABLT-1) data for experimental
case study-2 have been collected from Hangzhou Bearing
Test and Research Center (HBRC), China. The set up for the
experiment is shown in Fig. 14.

The experimental setup consists of four bearings mounted
on a shaft. The shaft is driven by an ac motor. As shown
in Fig. 14(b), the ac motor and the shaft are connected by
a rubber belt using two belt pulleys. Transmission cost and
generated noise are less in a setup run by rubber belt. Diameter
of both of the belt pulleys are 134 mm. A schematic of the
bearing-accelerated run to failure life test setup is shown in
Fig. 15.

The bearing model used in this experiment is the single-
row deep-groove ball bearings. Each bearing consists of eight
balls with a 0° contact angle. Pitch diameter of the bearing is
65.5 mm, while the corresponding ball diameter is 15.081 mm.
The outer race of the bearing is fixed and the inner race rotates
with the shaft. Upon failure of a bearing, it was replaced
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by another one. Rotational speed of the bearing is kept at
3000 rpm. A radial load of 20.5 kg was applied initially which
was amplified by 100 times by oil pressure amplifying unit.
A force oil-based lubrication system was used to control the
temperature at or around 58 °C. Four accelerometers are shown
in Fig. 15. The transducers were set on the bearing housing
for data collection. Data are collected at an interval of 5 min.
The data were recorded at a sampling frequency of 20 480 Hz.
At the end of run to failure test, an inner race fault is found
on the analyzed bearing.

SE, AE, FE, and OSE are utilized to interpret the whole
life cycle of the analyzed bearing. In this experiment, the first
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500 samples have been considered as the normal health state
to build the CUSUM-based monitoring model and calculate
the fault threshold value. From Fig. 16, it can be seen that
TSP for SE, AE, FE, and OSE are, respectively, 2503, 2541,
2248, and 2250. The envelope spectra at file numbers 2248 and
2250 have been conducted to understand the accuracy of the
fault detection. Also, to validate the designing of the threshold
value, envelope spectrum analysis has been conducted for
file number 500. According to bearing specification, the ball
passing frequency for inner race fault (BPFI) is 246 Hz. The
result of envelope spectrum is shown in Fig. 17.

From Fig. 17, it can be seen that all the key files contain
peaks at BPFI. This implies that FE and OSE both can detect
fault correctly. However, like SE and AE, FE also provides
false alarm. Additionally, since no fault has been found at file
number 500, bearing health before the file number 500 can
be considered normal. In this context, OSE shows consistent
monitoring performance throughout the whole monitoring
phase without the presence of any false alarm and detects the
fault earlier in compare to original SE and AE.

Additionally, change of SE and FE values with propagation
of inner race fault is downward which is similar to that
of outer race fault for SE and FE shown in Section V-A.
However, change of OSE with the inner race fault progression
is downward which is different from that of that outer race
fault (upward) as shown in Section V-A. Hence, it can be said
that by observing the change of OSE value it will be possible
to distinguish between outer and inner race faults.

VI. CONCLUSION

Focusing on the limitations of SE in continuous monitoring
of rolling element bearing health, an OSE is proposed in
this article. The major novelties of this study fall into two
aspects. Firstly, biasness of SE algorithm toward the bearing
PC is found out. Secondly, PC of bearing signal is separated
with the help of continuously adjustable TQWT. The proposed
OSE solves the weaknesses of original SE algorithm by not
only detecting bearing fault at an earlier time of inception but
also accurately differentiating between inner and outer race
faults by showing the expected degradation trend according to
theoretical analysis. Two case studies are performed to validate
the superiority of OSE with the state of the art SE, AE,
and FE methods. Experimental results demonstrate that the
proposed OSE is better in terms of early detection of bearing
fault, consistent monitoring of bearing health and automatic
identification of inner and outer race faults.

It is possible to address the nonlinearity and nonstationarity
associated with bearing vibration signal with the help of the
proposed OSE. As a result, it can be a promising tool for the
researchers especially in the areas of artificial neural network,
remaining useful life, and so on.
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