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A B S T R A C T   

Fault diagnosis of rotary machinery plays a significant role in the prognostic and health management system, 
which aims to identify the root causes of system failures and provide effective information for prognostics and 
maintenance. Recently, Lempel–Ziv complexity (LZC) method has been employed for fault diagnosis of rotary 
machinery. However, one actual problem is that LZC fails to account for the multiscale information inherent in 
measured vibration signals. We first introduce a method to compute the multi-scale LZC for a signal. However, 
the variance of LZC values becomes larger as the scale factor increases. To solve this actual problem, this paper 
proposes refined composite multi-scale Lempel-Ziv complexity (RCMLZC) to estimate the complexity. We find 
that the proposed RCMLZC method consistently yields better performance when analyzing three simulated noisy 
and impulsive signals. Based on RCMLZC, a novel intelligent fault diagnosis method is designed to recognize 
various fault types of rotating machinery. Comparative experiments are performed to confirm the effectiveness of 
proposed method including single fault and compound fault working conditions. Experimental results indicate 
that RCMLZC is more accurate than multi-scale LZC, multi-scale entropy, and LZC in extracting fault features 
from vibration signal and that RCMLZC performs best to recognize the various fault types of rotary machinery.   

1. Introduction 

The maintenance plays a vitally important role in industrial appli
cations, which has attracted deep attention from both expert and prac
tical maintenance [1–3]. Prognostic and health management (PHM) 
through the collaborative community has been applied for more effec
tive and efficient maintenance. Due to its undeniable importance, the 
past decades have witnessed a rapid progress of PHM in condition 
monitoring and fault diagnosis [4–6]. Fault diagnostics is one of the 
major tasks in the PHM system, which aims to diagnose and identify the 
root causes of system failures. The root causes identified can provide 
effective information for prognostics and maintenance as well as feed
back for system design optimization [7]. 

Rotary machinery has been widely used in civilian, industrial, and 
military applications. However, their key components, such as bearings 
and gears are prone to damage due to the tough working conditions [8, 
9]. The fault diagnostics of rotary machinery allows properly scheduled 
shutdowns to reduce unnecessary maintenance operations and enhance 
the reliability of rotary machinery. Therefore, in view of the high impact 
and extreme costs usually associated with failures, the fault diagnostics 

of rotary machinery has attracted considerable interests from both 
academia and industry fields [9–13]. 

The key step in the fault detection and isolation (FDI) is the fault 
feature extraction [14,15]. In order to separate the periodical impulses 
from the measured vibration signals, several advanced signal processing 
approaches have drawn great attention, such as spectral kurtosis [16, 
17], correlation coefficient analysis [18], wavelet transform [19], 
empirical mode decomposition [20], entropy-based methods [21,22], 
and deep learning techniques [23,24]. In recent years, the theory of 
complexity proposed by Lempel and Ziv [25] has received considerable 
attention. The Lempel–Ziv complexity (LZC) method has been success
fully applied to analyze time series generated from various nonlinear 
dynamics systems [26–29]. For example, Hong et al. [30] combined 
continuous wavelet transform with LZC to construct a new index to 
recognize the bearing fault severities of both inner race and outer race 
faults. Kedadouche et al. [31] demonstrated LZC is an effective tool to 
detect the early fault of gears compared with approximate entropy and 
sample entropy methods. Cui et al. [32] proposed an FDI method for 
bearing based on sparsogram and LZC indicator, which gives better 
diagnosing results than the traditional LZC method. Yin et al. [33] 
proposed an improved Lempel–Ziv method based on symbolic aggregate 

* Corresponding author. 
E-mail address: yongbo@nwpu.edu.cn (Y. Li).  

Contents lists available at ScienceDirect 

Journal of Manufacturing Systems 

journal homepage: www.elsevier.com/locate/jmansys 

https://doi.org/10.1016/j.jmsy.2020.05.004 
Received 13 December 2019; Received in revised form 7 May 2020; Accepted 8 May 2020   

mailto:yongbo@nwpu.edu.cn
www.sciencedirect.com/science/journal/02786125
https://www.elsevier.com/locate/jmansys
https://doi.org/10.1016/j.jmsy.2020.05.004
https://doi.org/10.1016/j.jmsy.2020.05.004
https://doi.org/10.1016/j.jmsy.2020.05.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmsy.2020.05.004&domain=pdf


Journal of Manufacturing Systems 61 (2021) 725–735

726

approximation for FDI of bearing, which can reflect the modulation 
information of bearing and enhance the diagnosing performance 
compared with traditional LZC method. 

However, these conventional LZC-based FDI methods have one 
inherent disadvantage. The fault information is usually embedded in 
different time-scale domains [34]. The LZC-based FDI methods only 
perform single-scale analysis, which cannot describe the fault charac
teristics comprehensively. In order to match the fault characteristic 
distribution of rotary machinery, we combined the multi-scale analysis 
[35] and LZC named multi-scale LZC (MLZC) to extract the fault features 
over multiple scales. However, the length of time series will decrease 
dramatically as the scale factor increases, which will cause the poor 
stability performance of MLZC in analyzing the short time series. To 
overcome this shortcoming, we further propose refined composite 
multi-scale LZC (RCMLZC) to reduce the variance of the LZC values at 
larger scales. After the feature extraction, we utilize support vector 
machines (SVM) [36,37] to recognize several fault types of rotary ma
chinery. The performance of proposed RCMLZC method is validated 
using both synthetic signals and experimental signals. To illustrate the 
advantage of our proposed RCMLZC in feature extraction, multi-scale 
entropy (MSE) [35,38] is also applied to process the experimental sig
nals. Results demonstrate that our proposed RCMLZC method out
performs MLZC, MSE, and LZC in extracting fault characteristics with 
high stability. 

The remainder of this paper is organized as follows. Section 2 briefly 
reviews the LZC algorithm and introduces our proposed RCMLZC algo
rithm. Moreover, the superiority of RCMLZC is validated using three 
simulated noisy and impulsive signals and compared with MLZC and 
LZC. Section 3 describes main steps of proposed intelligent fault diag
nosis method. Section 4 provides experimental validations using two 
case studies. Section 5 gives concluding remarks of this paper. 

2. The proposed RCMLZC method 

2.1. Lempel–Ziv complexity 

LZC was firstly proposed by Lempel and Ziv [25] in 1976, which has 
been proven to be an efficient tool to measure the complexity of a given 
time series. LZC consists of two basic operations: copy and insert [30]. 
For a given finite sequence x(t) with length N, five steps are needed in 
the LZC calculation process:  

(1) Cover the finite sequence x(t) into 0–1 sequence by comparing 
with the median value Td using Eq. (1). 

si =

{
0, if x(i) < Td
1, otherwise (1)  

The median is chosen for the symbolic process due to its robustness 
to any deviant value within the time series [28,39]. Then, we can get 
the symbol series SN = {s1s2 … sN}.  

(2) Set the initial value Sv,0 = {},Q0 = {},CN(0) = 0, and i = 1. Note 
that Sv and Q represent the substrings of the symbol series SN, and 
CN represents complexity counter.  

(3) Let Qi = {Qi− 1si} and determine whether Qi belongs to Sv,i− 1 =
{
Sv,i− 2si− 1

}
. If so, set CN(i) = CN(i − 1) and i = i + 1. Otherwise, 

set Qi = {},CN(i) = CN(i − 1)+ 1, and update i = i + 1.  
(4) Repeat Step (3) until the end of symbol series {s1s2 … sN}, and 

then the CN(N) can be obtained. CN(N) is the last complexity 
counter, which represents the total number of distinct words in 
the whole sequence SN.  

(5) Normalize the CN(N) to get relatively independent indicator Cn,N 
using Eqs. (2) and (3): 

Cn,N =
CN(N)

CUL
(2) 

Nomenclature 

WGN white Gaussian noise 
LZC Lempel–Ziv complexity 
MLZC multi-scale Lempel–Ziv complexity 
RCMLZC refined composite multi-scale Lempel–Ziv complexity 
MSE multi-scale entropy 
SVM support vector machines 
PHM Prognostic and Health Management 
FDI fault detection and isolation  

Fig. 1. Flowchart of the Lempel–Ziv complexity.  
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CUL = lim
N→∞

CN(N) ≈
N

log2N
(3)   

The above calculating procedures of LZC are illustrated in Fig. 1. It 
should be noted that simple amplitude compression of a signal can 
reserve the main useful information of the original frequency distribu
tion characteristics. A fault bearing model reported in [40] is employed 
as an example. The mathematical expression of the bearing model is 
expressed in Eq. (4): 

⎧
⎪⎪⎨

⎪⎪⎩

x(t) =
∑M

i=1
Ais(t − iT − τi) + w(t)

Ai = A0cos(2πQt + ϕA) + CA

s(t) = e− Btsin(2πfnt + ϕw)

(4) 

Note that Ai is the amplitude modulation signal with the period 1/Q, 
A0 is the amplitude of the signal, CA is a constant with restriction 
CA >A0, s(t) is the discrete oscillating impulse signal with an interval 
time T between two adjacent impacts, B is the damping coefficient, fn is 
the natural frequency of the system, τi is the time lag derived from the 
random slip of rolling elements, and w(t) is the white Gaussian noise. 

The time-domain waveforms of the simulated signal and its corre
sponding frequency spectrum are displayed in Fig. 2(a) and (b), 
respectively. From Fig. 2(b), the intrinsic frequency and its sidebands 
can be clearly observed. Note that the fault frequency is equal to the 
sideband interval frequency. We convert the time series into 0–1 
sequence and conduct FFT analysis. The obtained frequency spectrum is 
shown in Fig. 2(c). As can be seen, the sidebands of intrinsic frequency in 
the raw signal are not discarded and the frequency distribution char
acteristics are well reserved. This phenomenon shows that the binar
ization process can reserve the fault information effectively. 

2.2. Refined composite multi-scale Lempel–Ziv complexity 

Although LZC shows powerful performance in estimating the 
complexity for a given time series [32,33], LZC is facing challenge in 
processing the vibration signals measured from complex rotary ma
chinery. Because LZC is a single-analysis approach, however, the fault 
features of complex rotary machinery are embedded in multiple 
time-scale domains. To match the fault features well, we firstly combine 
the concept of multi-scale [35] with LZC, called multi-scale LZC (MLZC). 

However, multi-scale analysis of MLZC can shorten the length of time 
series. For example, for a given time series x(t) with N = 2000, the length 
of will decrease into N = 100 when the scale factor τ = 20. This phe
nomenon will cause the variance of MLZC becomes larger as the scale 
factor τ increases. To address this shortcoming, the refined composite 
multi-scale LZC (RCMLZC) is introduced in this paper. Four steps are 
required in computing the RCMLZC value. 

Fig. 2. (a) The waveforms of original vibration signal in Eq. (4), (b) the FFT 
spectrum of raw signal, (c) the FFT spectrum of 0–1 sequence. 

Fig. 3. Schematic illustration of the coarse-grained procedure for τ = 3.  
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(5) Conduct the refined composite multi-scale analysis. For a given 
time series X{x(k), k = 1, 2, …, N}, we first conduct the coarse- 
graining analysis using Eq. (5). Then, the original time series 
{xk} is divided into τ coarse-grained time series y(τ)k = {

y(τ)k,1 y(τ)k,2 … y(τ)k,p}, 1 ≤ k ≤ τ, where τ is the scale factor. Fig. 3 
shows that how to calculate the τ coarse-grained time series when 
τ = 3. Note that when τ = 1, the time series y(1) is the original time 
series {xk}: 

y(τ)k,j =
1
τ

∑jτ+k− 1

i=(j− 1)τ+k

xi,

1 ≤ j ≤
N
τ , 1 ≤ k ≤ τ

(5)    

(6) Convert the obtained coarse-grained time series y(τ)k = {

y(τ)k,1 y(τ)k,2 … y(τ)k,p} into symbolic series. Following the procedures 
in Fig. 1, we can obtain τ CN(N) and CUL values over different 
scales.  

(7) Calculate the average values CN(N) and CUL for all CN(N) and CUL 
using Eqs. (6) and (7), respectively: 

CN(N) =
1
τ
∑τ

k=1
CN(N, y(τ)k ) (6)  

CUL =
1
τ
∑τ

k=1
CUL(y(τ)k ) (7)    

(8) The definition of RCMLZC can be expressed as: 

RCMLZC(X, τ) = CN(N)

CUL
(8)   

For a better understanding of RCMLZC, Fig. 4(b) shows the main 
calculation process of RCMLZC. For comparison purpose, the flowchart 
of MLZC is also given in Fig. 4(a). Compared with MLZC, our RCMLZC 
method has the averaging process, thereby, the variance at lager scales 
can be significantly reduced. 

2.3. Validation using simulated signals 

In this subsection, three noisy and impulsive signals are adopted to 
verify the advantage of proposed RCMLZC in complexity estimation. 

Fig. 4. (a) Flowchart of the MLZC method, (b) flowchart of the RCMLZC method.  
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2.3.1. Simulated noisy signals 
White Gaussian noise (WGN) and 1/f noisy signals are used to show 

the stability advantage of proposed RCMLZC compared with MLZC. 
There are 100 groups of WGN and 1/f noise and each one has 2048 
sample points. For comparison, we set scale factor τ = 8 for MLZC and 
RCMLZC methods. The obtained results are shown in Fig. 5 and Table 1, 
respectively. Seen from Fig. 5 and Table 1, two conclusions can be drawn 
as follows. First, the proposed RCMLZC curve is smoother and steadier 
than the MLZC method, as depicted in Fig. 5. Second, the RCMLZC 
method has smaller error bars than the MLZC method, especially at 
larger scales. This phenomenon validates the proposed RCMLZC has the 
merit of stability. 

2.3.2. Simulated impulsive signals 
To validate the effectiveness of the RCMLZC in detecting gear fault 

severities, we use the simulated gear faulty signals with three crack fault 
severities, including slight fault, medium fault, and severe fault. The 
synthetic gear signal has 69,632 points, which is cut out using sliding 
windows of 2048 with a moving step of 512. Therefore, the number of 
sliding windows when the impulses occur can be calculated. The sliding 
window numbers for three fault severities are 18 to 37, 58 to 69, and 98 
to 117, respectively. The time domains of the three simulated bearing 
faulty signals are illustrated in shown in Fig. 6(a). For comparison 
purposes, the LZC, MLZC, and RCMLZC are all utilized to process the 
impulsive signals. Euclidean distance (ED) value between the average of 
the first 10 samples (normal samples) and each sample is computed to 
estimate their fault detection ability. Here we set τ = 8 for MLZC and 

Fig. 5. Analysis results of 100 independent WGN and 1/f noise with 2048 data points using MLZC and RCMLZC method: (a) analysis results of 1/f noise, (b) analysis 
results of WGN. 

Table 1 
Standard deviations of the RCMLZC and MLZC of 1/f noise and WGN.  

Noises Method Scale factor τ   

1 2 3 4 5 6 7 8 

1/f noise RCMLZC 0.0123 0.0133 0.0141 0.0133 0.0131 0.0157 0.0176 0.0169  
MLZC 0.0123 0.0191 0.0226 0.0284 0.0277 0.0301 0.0362 0.0411 

WGN RCMLZC 0.0229 0.0281 0.0324 0.0357 0.0402 0.0414 0.0434 0.0441  
MLZC 0.0229 0.0332 0.0369 0.0427 0.0528 0.0561 0.0591 0.0552  

Fig. 6. Performance comparison results of LZC, MLZC and RCMLZC methods: 
(a) the simulated impulsive signal (b) the ED value of LZC, (b) the ED value of 
MLZC, (d) the ED value of RCMLZC. 

Fig. 7. Performance comparison results of LZC, MLZC and RCMLZC methods: 
(a) the simulated impulsive signal (b) the ED value of LZC, (b) the ED value of 
MLZC, (d) the ED value of RCMLZC. 
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RCMLZC methods. 
The obtained results are shown in Fig. 6. Seen from Fig. 6(b), it can 

be found that the original LZC method cannot detect the impulsive 
derived from three different fault severities. By contrast, MLZC and 
RCMLZC both generate higher ED values when the impulses occur. 
Moreover, our proposed RCMLZC has the least fluctuation in recog
nizing different gear faulty severities, as shown in Fig. 6(d). The phe
nomenon validates the ability of the proposed RCMLZC in impulsive 
detection. 

The third simulated signal aims to test the performance of the pro
posed RCMLZC in recognizing bearing fault types. Here, we utilize three 
different bearing fault types, including ball fault (BF), inner race fault 
(IRF), and outer race fault (ORF). The number of sample points of syn
thetic signal is 35,840, as depicted in Fig. 7(a). Like above, the bearing 
fault signal is also cut out using sliding windows of 2048 with a moving 
step length of 256. The impulsive sliding window numbers for three 
bearing fault types are 14–40, 54–76, and 90–119, respectively. Also, we 
set the scale τ = 8 for MLZC and RCMLZC methods. 

The obtained results using three methods are shown in Figure 7(b)– 
(d), respectively. Seen from Fig. 7 (b), when periodical impulses are 
generated by ball fault and inner race fault, the LZC values represent 
large fluctuation. This phenomenon indicates the original LZC method 
has poor performance in distinguishing the noise and periodical im
pulses. Compared with LZC, MLZC and RCMLZC are able to track the 
periodical impulses. However, our proposed RCMLZC performs best 
with least fluctuation and highest sensitivity in impulse detection among 
three methods, as shown in Fig. 7(d). Therefore, we can draw the 
conclusion that the fault detection ability of the three methods is: 
RCMLZC >MLZC > LZC. 

3. The proposed intelligent fault diagnosis method 

There are two stages in the proposed RCMLZC-based intelligent fault 
diagnosis method. First, RCMLZC is employed to extract the fault fea
tures from the vibration signals of rotary machinery. Then, the classifier 
SVM is applied to classify different fault types. Five steps are required in 
the proposed fault diagnosis method as below.  

Step 1. Collect vibration data for various conditions of rotary machinery 
and segment the signal into 100 samples for each class.  

Step 2. Divide the datasets into training datasets and testing datasets.  

Step 3. Apply RCMLZC to extract fault information and obtain the fault 
features. Note that only one parameter of RCMLZC is set as τ = 8.  

Step 4. Train the SVM classifier using training features.  
Step 5. Test the trained SVM classifier and accomplish the intelligent 

fault diagnosis of rotary machinery. 

The flowchart of the proposed fault diagnosis method is shown in 
Fig. 8. It should be noted that, in this study, the radial basis function 
kernel is selected due to its universal application and good performance 
[41]. The kernel function plays a crucial role in SVM, which not only 
reduces the computational load but also solves the high-dimensional 
transformation effectively. The radial basis function kernel is 
expressed as K(x1, x2) = exp( − γ‖x1 − x2‖

2
), where γ > 0, and γ is the 

kernel parameter. It should be noted that, in the actual data process, the 
penalty parameter C and the kernel parameter γ of SVM are optimized by 
genetic algorithm for each multi-class SVM method. The parameters are 
set in the following intervals: C (0.1, 1000) and γ (0.001,10) following 
Ref. [34]. 

4. Experimental results 

4.1. Description of lab setup and experimental setting 

Experiments were conducted on rotary machinery called Spectra
Quest machinery fault simulator. The test rig is shown in Fig. 9(a) and  
(b). It consists of a reliance electric motor, a three-way gearbox with 
straight cut bevel gears, and rolling bearings. A magnetic clutch was also 
mounted at the rear of the gearbox for load generation. An accelerom
eter was installed on the top of the gearbox to collect the vibration 
signals. The sampling frequency was set 12,800 Hz and the rotating 
speed was 3000 rpm. In the experiments, the load torque was 5 in-lbs. 

Fig. 8. Flowchart of the proposed RCMLZC-based intelligent fault diagnosis method: (a) illustration and (b) the flowchart of recognition process.  

Fig. 9. (a) The machinery fault simulator system, (b) the layout of the test rig.  
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Different faults were simulated by replacing the fault gear (including 
the pitting in the driving gear, the broken tooth in the driving gear, and 
the missing tooth in the driving gear, as shown in Fig. 10(a)–(c), 
respectively) and the fault bearing (including inner race fault, outer race 
fault, ball fault, grooving in the inner race, and grooving in the outer 
race, as shown in Fig. 10(d)–(h), respectively). 

In this study, two experiments were designed for validations, which 
aim to test the diagnostic performance of RCMLZC in recognizing single 
faults and compound faults, respectively. In the two case studies, the 
MSE method is also used for comparison. For the purpose of a fair 
comparison, we set the scale τ = 8 for the MSE, MLZC, and RCMLZC 
method. Meanwhile, the SVM is trained by 50% of samples, and the rest 
samples are utilized for performance test. 

4.2. Experiment 1 

Experiment 1 consists of one healthy condition and eight single fault 
conditions, including pitting in the driving gear (PT), broken tooth in the 
driving gear (BT), missing tooth in the driving gear (MT), grooving in 

the inner race(GIR), grooving in the outer race(GOR), inner race fault 
(IRF), outer race fault (ORF), and ball fault (BF). Each class owns 100 
samples and there are total 900 samples (100 samples × 9 fault types). 
Meanwhile, the length of each sample was 2048 points. The waveforms 
under nine healthy conditions are showed in Fig. 11. Table 2 gives 
detailed information of nine healthy conditions, including class label, 
damage diameter, and the numbers of training and testing data. 

Following the steps in Section 3, we utilize the proposed RCMLZC- 
SVM method to extract fault features. The obtained RCMLZC values 
with an average of 100 samples under nine working conditions are 

Fig. 10. Faulty gears and bearings: (a) pitting in the driving gear, (b) broken 
tooth in the driving gear, (c) missing tooth in the driving gear, (d) ball fault, (e) 
inner race fault, (f) outer race fault, (g) grooving in the inner race, (h) grooving 
in the outer race. 

Fig. 11. The waveforms under nine healthy conditions in Experiment 1: (a) 
normal condition (NOR), (b) ball fault (BF), (c) inner race fault (IRF), (d) outer 
race fault (ORF), (e) grooving in the inner race(GIR), (f) grooving in the outer 
race(GOR), (g) broken tooth in the driving gear (BT), (h) missing tooth in the 
driving gear (MT), (i) pitting in the driving gear (PT). 

Table 2 
The detailed description of the experimental data with nine health conditions.  

Health 
conditions 

Class 
label 

Damage 
diameter(mm) 

Number of 
training data 

Number of 
testing data 

NOR 1 0 50 50 
BF 2 0.01 50 50 
IRF 3 0.01 50 50 
ORF 4 0.01 50 50 
GIR 5 0.2 50 50 
GOR 6 0.2 50 50 
BT 7 – 50 50 
MT 8 – 50 50 
PT 9 – 50 50  

Fig. 12. RCMLZC over 8 scales with the average of 100 trials.  

Fig. 13. Classification results of Experiment 1 using proposed RCMLZC- 
SVM method. 
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presented in Figure 12. As can be seen, the RCMLZC at scale τ = 1 
(namely original LZC) cannot distinguish these single faulty conditions 
with overlapping values. By contrast, the RCMLZC values at larger scales 
(such as τ = 7) can separate these working conditions well. This phe
nomenon demonstrates that the fault information is embedded in mul
tiple time-scale domains, and only single-scale analysis is ineffective to 
extract the comprehensive fault information. 

Then, the obtained features are fed into SVM for classification, and 
the obtained results are shown in Figure 13. It can be found that 20 
samples are misclassified with the final accuracy of 95.56%. For com
parison, the MLZC-SVM, MSE-SVM, and LZC-SVM are also tested. To 
avoid randomness, each method runs 20 times. Figure 14 and Table 3 
illustrate the detailed recognition results using four methods. First, the 
proposed RCMLZC-SVM method obtains the highest average classifica
tion accuracy of 95.31% (ranging from 94% to 96.89%). This indicates 
RCMLZC has the best performance in extracting fault features among the 
four methods. Second, MLZC-SVM method has the second highest 
average classification accuracy of 81.70% (ranging from 79.56% to 
84.44%), which is lower than that of the RCMLZC. This is because that 
RCMLZC has stability advantage comparing with the MLZC. Third, the 
LZC-SVM method has the lowest classification accuracies (ranging from 
46.67% to 50.89%) due to the ineffectiveness of single-scale analysis. 
Lastly, the diagnosing ability of MSE-SVM is moderate with average 
accuracy of 78.88%. 

4.3. Experiment 2 

Experiment 2 aims to investigate the performance of RCMLZC in 
compound-fault diagnosis of rotating machinery. Experiment 2 is 
composed of seven compound-fault types, including normal condition 
(NOR), normal tooth in the driving gear with inner race fault (NI), 
normal tooth in the driving gear with outer race fault(NO), broken tooth 
in the driving gear with inner race fault (BI), broken tooth in the driving 
gear with outer race fault (BO),missing tooth in the driving gear with 
inner race fault (MI), and missing tooth in the driving gear with outer 
race fault (MO). Each class owns 100 samples and there are total 700 

samples (100 samples × 7 fault types). Also, the length of each sample 
was 2,048 points. The waveforms under seven working types are showed 
in Figure 15. The detailed information of seven compound-fault condi
tions is shown in Table 4. 

First, the proposed RCMLZC method is utilized to extract fault fea
tures. Fig. 16 shows the obtained RCMLZC values with an average of 100 
samples. Seen from Fig. 16, RCMLZC values can be separated signifi
cantly at scale τ = 8 compared with τ = 1. This phenomenon demon
strates that the refined composite multi-scale procedure can enhance the 
ability of fault detection effectively. 

Like Experiment 1, the classifier SVM is applied for classification. 
The classification results are shown in Fig. 17. Seen from Fig. 17, there 
are total 13 samples misclassified with an accuracy of 96.29%. For 
comparison, the MSE, LZC, and MLZC method are also tested and the 
testing accuracies of four methods are shown in Table 3 and Fig. 18, 
respectively. As can be seen, first, the existing MSE-SVM method has a 
mediocre performance with an average classification accuracy of 
70.43%. Second, the single-scale analysis (namely LZC-SVM method), is 
not effective with an average classification accuracy of 40.77%. Third, 
combined with multi-scale analysis, the MLZC-SVM method is improved 
with the average classification accuracy of 85.21%. Lastly, the proposed 
RCMLZC-SVM method has the highest average classification accuracy of 
97.24%. The above two experiments have proven that our proposed 
RCMLZC-based intelligent fault diagnosis method is effective in the FDI 
of rotary machinery. 

Moreover, two-dimensional visualization of three methods: 
RCMLZC, MLZC, and MSE via the PCA method are depicted in Fig. 19. 
Seen from Fig. 19 (a), it can be found that the samples with the RCMLZC 
method are obviously separated from each other by the two-dimensional 
histograms. Nevertheless, the features are distributed without a nice 

Fig. 14. Classification accuracies using four methods for 20 trial runs in 
Experiment 1. 

Table 3 
Detailed classification accuracy of the experimental data sets in Experiment 1 and Experiment 2.  

Experiments RCMLZC-SVM MLZC-SVM LZC-SVM MSE-SVM  

Accuracy(%) Accuracy(%) Accuracy(%) Accuracy(%)  

Max Min Mean Max Min Mean Max Min Mean Max Min Mean 

1 96.89 94 95.31 84.44 79.56 81.70 50.89 46.67 48.97 81.56 76.89 78.88 
2 98.87 96.29 97.24 88.29 83.43 85.21 44.57 38 40.77 75.71 65.43 70.43  

Fig. 15. The waveforms under seven healthy conditions in Experiment 2: (a) 
normal condition (NOR), (b) broken tooth in the driving gear with inner race 
fault (BI), (c) broken tooth in the driving gear with outer race fault (BO) (d) 
missing tooth in the driving gear with inner race fault (MI), (e) missing tooth in 
the driving gear with outer race fault (MO), (f) normal tooth in the driving gear 
with inner race fault (NI), (g) normal tooth in the driving gear with outer race 
fault(NO). 
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cluster using MLZC and MSE method, as shown in Fig. 19 (b) and (c), 
respectively. This phenomenon indicates that the fault features extrac
ted by RCMLZC contain much more useful fault information than the 
other two methods. 

We next discuss the effect of scale factor τ in RCMLZC method. We 
test the classification accuracies and CPU time using different scale 
factor τ. Nine scale factors are tested: 1, 2, 3, 5, 7, 8, 9, 10, and 11. The 
obtained results are illustrated in Table 5. It can be found that a smaller 
scale τ will eliminate the classification accuracy, while a larger scale τ 
will enhance the CPU time. The scale τ = 8 achieves the highest classi
fication accuracy. Considering the computation efficiency, we select the 

τ = 8 in this study. 
We also test the performance of our proposed RCMLZC method using 

different percentages of samples for training (the remaining samples will 
be considered as testing samples). Eight percentages are tested: 10%, 
20%, 30%, 40%, 50%, 60%, 70%, and 90%. To reduce randomness, 20 
trials are conducted for each percentage. The averaging training and 
testing accuracies are calculated and their corresponding standard de
viations are illustrated in Table 6 and Fig. 20, respectively. Three con
clusions can be drawn from Table 6 and Fig. 20. First, since the fault 
features extracted using our proposed RCMLZC method represent good 
distinguishing ability, a high classification accuracy can be still obtained 
even under small sample condition. Second, as the training percentage 
increases, the average training accuracy shows an increasing trend, 
while the standard deviation shows a downward trend. For example, 
when the training percentage is 10%, the average training accuracy is 
97.07% with the standard deviation 0.0166. When the training per
centage increases to 90%, the average training accuracy is 98.35% with 
the standard deviation 0.0024. Note that standard deviation values may 
show small fluctuations for some training percentages due to the random 
repeating selection of training samples. This phenomenon illustrates 
that the classification model does not overfit the data. Third, it can be 
observed that the testing accuracy increases at a modest pace with the 
increase of training samples. When the percentage increases to 50%, the 
testing accuracy of the proposed method is 97.24% with the standard 
deviation 0.0032, which is a good recognition rate with a slight standard 
deviation. Considering the average accuracy and standard deviation, we 
select 50% of samples to demonstrate the advantage of our proposed 
RCMLZC method. 

Finally, we calculate the time complexity of RCMLZC. Time 
complexity is an indicator to reflect the time consuming of the algorithm 
by countering the main calculation loop [42]. The time complexity of 
RCMLZC is related to the length N of time series and the scale parameter 

Table 4 
The detailed description of the experimental data with seven health conditions.  

Health 
conditions 

Class 
label 

Damage 
diameter (mm) 

Number of 
training data 

Number of 
testing data 

NOR 1 0 50 50 
BI 2 0.01 50 50 
BO 3 0.01 50 50 
MI 4 0.01 50 50 
MO 5 0.01 50 50 
NI 6 0.01 50 50 
NO 7 0.01 50 50  

Fig. 16. RCMLZC over 8 scales with the average of 100 trials.  

Fig. 17. Classification result of Experiment 2 using the proposed 
RCMLZC method. 

Fig. 18. Classification accuracy of the four methods for 20 trial runs in 
Experiment 2. 

Fig. 19. Two-dimensional visualization using three methods in Experiment 2: 
(a) proposed RCMLZC method, (b) MLZC method, (c) MSE method. 
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τ. The main calculation loop of RCMLZC methods is provided in Fig. 21. 
As can be seen, we can get T = τN ~ O(N). Since the original LZC method 
has the complexity of O(N), our proposed RCMLZC method takes more 

time than the original LZC method in estimating the complexity of time 
series. 

5. Conclusions 

A novel complexity analysis algorithm called RCMLZC is proposed to 
extract the fault characteristics of rotary machinery in this paper. The 
concept of RCMLZC is defined, and the shortcomings of the original LZC 
method caused by single analysis can be avoided by performing the 
refined composite multi-scale analysis. The effectiveness of RCMLZC is 
validated using a simulation and experimental signals. Results demon
strate that the proposed RCMLZC method has the best performance in 
the fault diagnostics of rotary machinery compared with MLZC, MSE, 
and LZC methods. In addition, this method might provide practical hints 
on application of LZC in condition monitoring for collaborative PHM. 
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