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Abstract
Multiscale entropy-based methods have made great progress in the field of health condition monitoring and fault diagno-
sis of machines due to their powerful feature representation capabilities. However, existing multiscale entropy methods
suffer from three major obstacles: high fluctuation under large scale-factor, loss of high-frequency information, and poor
robustness to noises. Thus, this work proposes a symbol-scale analysis method to deal with the above problems. In one
aspect, to capture fault features from the time series over multiple time scales, time-delay process of different intervals
is utilized to obtain long-term features and short-term features. In the other aspect, symbol-scale analysis introduces a
symbolization procedure and maps time series into a corresponding sequence of symbols to overcome the limitation of
weak fault extraction under a low-signal-to-noise ratio environment. Moreover, the symbol-scale entropy approach is
developed by integrating with diversity entropy, called symbol-scale diversity entropy. The effectiveness of the proposed
strategy is intensively validated using two simulated signals and experimental cases. Results demonstrate its advantages
in dynamic change tracking ability and calculation efficiency by comparing it with other state-of-the-art entropy methods.
Apart from diversity entropy, the versatility of incorporating the proposed symbol-scale analysis and other entropy
methods is also verified using experimental data.
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Introduction

Fault diagnosis plays a significant role in the health
management of rotating machinery, which aims to
ensure safe operation and reduction of unnecessary
economic losses. Vibration-based diagnostics have gar-
nered considerable attention from researchers in both
academia and industry due to their effectiveness in
identifying faults and potential issues in machinery.1–3

However, the vibration signals with partial damage
contains much noise and thus represent nonlinear and
nonstationary characteristics, which pose difficulties in
rotating machinery fault diagnosis.4,5

Fortunately, the nonlinear dynamic indicators can
establish the bridge between the measured vibration
signal and fault stages by measuring their dynamic
change.6 Quantitative analysis of rotating machinery-
generated time series signals based on nonlinear
dynamic methods clarifies the law of system dynamics.

Entropy measure, with powerful feature representa-
tion capability, has made great progress in structural
health monitoring7,8 and fault diagnosis of rotating
machinery.9–12

Several well-known entropy measures have been
developed, including approximate entropy,13 sample
entropy (SE),14 permutation entropy (PE),15 fuzzy
entropy (FE),16 dispersion entropy,17 and so on.18–20
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These entropy techniques offer valuable insights into
the underlying patterns and complexity of signals. In
recent years, a new entropy measure called diversity
entropy21 has been proposed. To further enhance the
capability of entropy-based methods for signal analy-
sis, symbolic dynamic filtering (SDF)22 has been incor-
porated with entropy methods.23–27 These approaches
combine the advantages of entropy analysis with sym-
bolic dynamics, allowing for more effective extraction
of meaningful features from signals. By transforming
the continuous signals into symbolic sequences and
applying entropy measures to these symbolic
sequences, SDF enhances the detection and characteri-
zation of specific patterns or abnormalities in the
signals.

These entropy methods quantify the complexity
through only a single scale, which neglects the correla-
tions between the different time scales. Considering this
problem, a multiscale analysis based on coarse-graining
analysis was developed by Costa.28 With the help of the
coarse-graining analysis, multiscale-based entropy meth-
ods, such as multiscale SE, multiscale fuzzy entropy
(MFE), multiscale permutation entropy (MPE), and
multiscale diversity entropy (MDE) with modified mul-
tiscale analysis have been developed for comprehensive
complexity evaluation of time series.29–31 Unfortunately,
the data length can be shortened rapidly as the scale
increases, resulting in inaccurate estimation at larger
scales for traditional multiscale analysis. To avoid this
shortcoming, composite multiscale entropy9 and refined
composite multiscale entropy32,33 have been developed
via refining the coarse-grained time series strategy to
overcome the limitation of data length. In addition, D.
Pham34 proposed an improved multiscale analysis using
the time-delay process to solve this problem. These
methods have been applied in mechanical system fault
diagnosis35,36 and structural health monitoring7,8 by
extracting information from complex and nonlinear
time series.

However, there are still problems in the traditional
coarse-graining multiscale analysis. First, coarse-
graining analysis used in many multiscale-based
entropy methods generally leads to large fluctuations
and deviations in a large scale factor. Second, tradi-
tional multiscale entropy methods based on coarse-
grained analysis aim to obtain sequences under differ-
ent scales using averaging. However, the averaging step
is essentially a smoothing process of the original signal,
which may result in the loss of information embedded
in the high-frequency component of signals.37 Lastly,
in real acquisition data, the signals can be distorted by
interference or noise. Finally, in the real acquisition
data, the signals may be disturbed by interferences or
noises. The direct use of entropy without noise

reduction can heavily influence the accuracy of feature
extraction and further fault type identification.

In this work, a novel scale-analysis-based model
named symbol-scale analysis is proposed to measure
complexity under different scales via time-delay pro-
cess34,38 and SDF.22 On the one hand, to relieve the
limits of the above situations, inspired by a method to
calculate the fractal dimension of time series,39 a time-
delay process with different intervals is introduced as
the multiscale method. Unlike the past coarse-graining
multiscale-based entropy methods, by doing this, the
long-term features and short-term features can be
obtained. The long-term features indicate the overall
trend of signals, while the short-term features represent
subtle variations in localized regions, where both long-
term features and short-term features can be potentially
vital to measure the complexity of signals and accom-
plish the classification tasks. On the other hand, unlike
the coarse-graining-based multiscale approach that will
lose high-frequency information due to the smoothing
process, the multiscale time series generated here are
completely based on the amplitude information of orig-
inal data. Hence, the multiscale analysis based on time-
delay process can effectively retain the important con-
structing information of original time series without
information loss. Moreover, SDF is used to reduce the
noise induced by the environment and enhance robust-
ness in a low signal-to-noise ratio (SNR) environment.
The original time series will be discretized into symbolic
sequences by SDF so that the noise-related components
will be reduced and the accuracy of fault feature extrac-
tion can be improved. Finally, the symbolic data will
decrease the calculation complexity, thereby resulting
in high computation efficiency.

In addition, symbol-scale analysis is further inte-
grated with diversity entropy, and then a novel metric
called symbol-scale diversity entropy (SSDE) is devel-
oped. In view of the advantages of SSDE, an intelligent
diagnosis scheme is proposed by incorporating SSDE
and support vector machine (SVM). The performance
of the proposed SSDE method is firstly verified by
simulation analysis of the bearing and gearbox. To
establish the versatility of SSDE approach, this is fol-
lowed by two different experimental case studies of
rolling bearing and planetary gearbox. Compared with
MFE, MPE, and MDE, the proposed SSDE method
can achieve the highest recognition accuracy with the
best robustness against noise and excellent calculation
efficiency.

The main contributions of this work can be summar-
ized as follows:

(1) To capture the fault characteristics from the time
series over multiple time scales, the time-delay
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process of different intervals is utilized to obtain
long-term features and short-term features.

(2) Symbol-scale analysis introduces a symbolization
procedure and maps time series into a correspond-
ing sequence of symbols to reduce the noise-
related fluctuations of signals and overcome the
limitation of weak fault extraction under a low-
SNR environment.

(3) A novel metric called SSDE is developed, and the
effectiveness of SSDE approach in fault feature
extraction of rotating machines is verified by both
simulated and experimental case studies of bear-
ing and gearbox.

The remainder of this paper is organized as follows.
The basic concepts of SSDE and the main steps of the
proposed SSDE-based fault diagnosis approach are
introduced in section ‘‘Methodology.’’ In section
‘‘Verification using simulated signals,’’ the effectiveness
of the proposed method is demonstrated by simulated
gearbox signals and bearing signals. Section
‘‘Experimental case studies’’ assesses the performance
of the proposed SSDE-based method in fault condition
recognition using two experimental case studies.
Lastly, in section ‘‘Conclusion,’’ we conclude this
article.

Methodology

Problem statement and motivation

In recent years, although various entropy methods and
their multiscale extensions have been widely used in
mechanical signals analysis, some deficiencies remain
to be solved. A novel multiscale analysis strategy is an
urgent need to solve the dilemma of information loss
and poor robustness to noises. Based on the above
analysis, the deficiencies of existing multiscale entropy
methods can be concluded as two aspects:

(1) Intrinsic limit of traditional coarse-graining multi-
scale method. In traditional multiscale entropy
calculation, coarse-graining processing is a neces-
sary step, where a typical coarse-graining strategy
in MPE or MFE is a non-overlapping extraction
averaging process. In fact, as can be seen from
Figure 1(a), the average operation in coarse-
graining multiscale analysis is similar to smooth-
ing the raw signal, which is linear mean filtering.
Therefore, the linear mean filtering will discard
the spectral response characteristics that contain
important information.37 In addition, coarse-

graining analysis generally leads to large fluctua-
tion and deviation in large scale factors, resulting
in an inaccurate estimation of complexity and
poor accuracy.

(2) Drawbacks about robustness in realistic signals.
The disturbances and noises could affect the esti-
mation of entropy-based analysis by changing the
frequency distribution and increasing the standard
deviation of the data. The direct use of entropy
without noise reduction can seriously influence
the accuracy of feature extraction and fault type
identification. Hence, when the entropy or multi-
scale entropy method is applied to the actual
mechanical signal analysis, the noise reduction
process is necessary to ensure more reliable analy-
sis results.

To relieve the limits of the above situations, a novel
multiscale model named symbol-scale analysis is first
proposed to measure complexity under different scales
via time-delay process and SDF. First, SSDE utilizes
the time-delay process of different intervals to capture
the fault characteristics from the time series over multi-
ple time scales. Second, SSDE combines the merits of
SDF in noise reduction and calculation efficiency,
where symbolization is designed to overcome the lim-
itation of weak fault extraction under a low-SNR envi-
ronment. It can be indicated that SSDE successfully
overcomes drawbacks of traditional multiscale entropy,
and improves estimation accuracy and robustness
significantly.

To visually illustrate the limitations of existing mul-
tiscale methods, Figure 1(b) presents a comparative
analysis of information extraction and restoration abil-
ities between the traditional coarse-graining multiscale
method and the proposed symbol-scale analysis
method. The analysis was conducted using a simulated
gear signal from section ‘‘Simulated gearbox signals,’’
focusing on the spectral response characteristics at
scale factors: 1, 2, and 3.

This analysis aims to highlight the differences in
spectral characteristics obtained from the two methods.
Specifically, the coarse-grained sequence obtained from
the traditional method exhibits weak spectral compo-
nents at the gear mesh frequency (fm) and its harmo-
nics, as illustrated in Figure 1(a). On the contrary, as
demonstrated in the left column of Figure 1(b), the
symbol-scale sequence obtained from the proposed
method shows notable amplitudes at fm and its harmo-
nics. By showcasing these distinct spectral responses,
the figure underscores the improved performance of
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the symbol-scale analysis method in capturing impor-
tant frequency components that may be masked or
weakened by traditional multiscale approaches.

Symbol-scale diversity entropy

In this part, we proposed a novel SSDE method.
Overall, there are two main steps in our SSDE algo-
rithm: (1) the symbol-scale algorithm aiming to gener-
ate multiple time series under different scales; (2)
entropy calculation using the probability distribution-
based diversity entropy.

Symbol-scale analysis. For a given time series
X = x1, . . . , xi, . . . xNf g with length N and scale para-
meter t, the defined symbol-scale analysis can be
accomplished following three steps:

Step 1: The original series is reconstructed by time-
delay analysis of different intervals. For time series
X= x1, . . . , xi, . . . xNf g, a new time series can be

constructed using Equation (1):

Yb
a = xb, xb + a, xb + 2a, . . . , x

b +
N�b

a

� �
a

� �
ð1Þ

where b = 1, 2, . . . ,a. b and a are positive integers,
where b is the initial point, a represents the step size of
time-delay analysis and N � b=a½ � indicates the nearest
integer that does not exceed N � b=a. In the case of
a = 3 and N = 100, three time series obtained by the
above process can be described as follows:

Y1
3 : x1, x4, x7, . . . , x97, x100

Y2
3 : x2, x5, x8, . . . , x98

Y3
3 : x3, x6, x9, . . . , x99

ð2Þ

Step 2: The obtained a time series Yb
a, b = 1, 2, . . . ,a

are transformed into a symbol sequences
Sb

a, b = 1, 2, . . . ,a with e symbols, where e represents

(a)

(b)

Figure 1. Limits summary of existing multiscale method: (a) coarse-graining multiscale method and (b) normalized spectrum of
coarse-graining sequences and symbol-scale sequences at scale factors: 1, 2, and 3. fm is gear mesh frequency.
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the potential number of symbols. These a symbol
sequences are the symbol-scale sequences. Here, maxi-
mum entropy partitioning method22 is utilized to
accomplish the symbolization process, which is
achieved by inducing the symbols to present a uniform
probability distribution.
Step 3: Repeat Steps (1) and (2) for a = 1, 2, 3, . . . , t, and
obtain new symbol-scale sequences with different a values.

Calculation procedure of SSDE. Based on the symbol-scale
analysis, the symbol-scale entropy is proposed to mea-
sure complexity under different symbol scales by inte-
grating with diversity entropy. For a given time series
X = x1, . . . , xi, . . . xNf g with length N, the defined
SSDE can be accomplished by following six steps:

Step 1: Reconstruct the original time series by symbol-
scale analysis and obtain a symbol-scale sequences
Sb

a, b = 1, 2, . . . ,a referring to section ‘‘Symbol-scale
analysis.’’
Step 2: Conduct the phase-space reconstruction for a

symbol-scale sequences Sb
a, b = 1, 2, . . . ,a. Based on

Taken’s embedding theorem, construct the phase space
matrix S(m) with a dimension of m as follows:

Mb
a(m) = M

b
a, 1(m), � � � ,Mb

a, i(m), � � � ,Mb
a,N�(m�1)(m)

h iT

=

Sb
a(1) Sb

a(2) . . . Sb
a(1 + (m� 1))

..

. ..
. ..

. ..
.

Sb
a(i) Sb

a(i + 1) . . . Sb
a(i + (m� 1))

..

. ..
. . .

. ..
.

Sb
a(N � (m� 1)) Sb

a(N � m + 2) . . . Sb
a(N)

2
666666664

3
777777775
ð3Þ

where s
b
a, i(m) represents the i-th embedding vector of

length m for phase space matrix.

Step 3: Compute cosine similarity between adjacent
vectors and obtain the cosine similarity matrix
Sim= fSim1, � � � Simi, � � � , SimN�mg. Here, the cosine
similarity between two vectors Mb

a, i(m) and M
b
a, i + 1(m)

can be expressed as Equation (4):

Simi = Sim(Mb
a, i(m),Mb

a, i + 1(m))

=
M

b
a, i(m),Mb

a, i + 1(m)
D E
M

b
a, i(m)

��� ���
2
� M

b
a, i + 1(m)

��� ���
2

ð4Þ

where x, yh i is the inner product between the vectors x
and y; and xk k2 is the Euclidean norm of x.

Step 4: State pattern probability: the histogram
approach is applied to estimate the empirical probabil-
ity density function of the cosine similarity matrix Sim.
If the histogram has l bins, Pk(k = 1, 2, :::, l) is used to
denote the probability of each bin. Obviously,Pl
n = 1

Pn = 1.

Step 5: Calculate the diversity entropy HDE value,
which is expressed as:

HDE Sb
a,m, l

� �
= � 1

ln l

Xl

n = 1

Pn ln Pn ð5Þ

where Sb
a represents symbol-scale sequence, m indicates

the embedding dimension, and l means the number of
bins. Then, the SSDE value is defined as the means of
a HDE; that is,

Ha
SSDE(X ,a, e,m, l) =

1

a

Xa

b = 1

HDE Sb
a,m, l

� �
ð6Þ

Lastly, repeat Steps (1)–(5) for a = 1, 2, 3, . . . , t, and
then obtain t Ha

SSDE values, which can be expressed as:

H1:t
SSDE = fH1

SSDE; H2
SSDE; :::; H t�1

SSDE; H t
SSDEg ð7Þ

For a better explanation of the SSDE method, a
flowchart of SSDE is illustrated in Figure 2. In addi-
tion, the pseudo-code of SSDE is illustrated in
Algorithm 1.

Parameter analysis of proposed SSDE

Before usage of proposed SSDE method, there are four
parameters that need to be considered, including num-
ber of intervals l, number of symbols e, embedding
dimension m and scale factor t. Here, the influence of
the parameters will be discussed by observing their per-
formance in evaluating the signal with known complex-
ity levels. In this paper, we discuss the influence of
parameter selection of SSDE through distinguishing
various signals generated by mixture (MIX) (p) with
different p. In essence, the MIX (p) process is in nature
that N 3 p randomly chosen points of sinusoid signal
of length N are replaced by random noise, where the
spectrum distribution of signals generated by MIX (p)
process with different p is different so that there are
different intrinsic structures.16

In the study, p = 0, 0.1, 0.3, 0.5, 0.7, and 1 were
applied to conduct five MIX (p) processes with differ-
ent complexity levels. It is noticed that the signal of
p = 0 represents the periodic signal and a value of
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p = 1 represents pure white Gaussian noise. Here, one
hundred independent realizations for each MIX (p)
process were performed, and then the average value
was computed to eliminate random factors. As men-
tioned above, their complexity levels should correspond
to their irregularity levels. Therefore, we gradually
reduce the value of p from MIX (1) to MIX (0), and
entropy value decreases gradually. The results are illu-
strated in the Figure 3.

First, the influence of different m was examined.
The parameter m of SSDE means the vector length of
phase space. In the case of large dimension m, a longer
time series is required. However, a larger m allows for
a more detailed phase-space reconstruction of the
dynamic process. Here, m was set to seven different
values from two to eight with a step size of one. The
mean and standard deviation curves of SSDE of five
series generated by MIX (p) processes were computed
and illustrated in Figure 3(a). As can be seen from
Figure 3(a), when m is large (such as 7), the standard

deviation is also significant. Hence, generally, we set m
as a small integer of 3 or 4 and m is fixed to 4 in the
paper.

Then, the dependence of SSDE on the parameter e is
shown, which represents the number of symbols. Here,
e is set at eight different values from 5 to 40 with equal
steps, and the analysis results are depicted in Figure
3(b). It can be found from Figure 3(b) that the SSDE
value changes only slightly. As the number of symbols
increases, the robustness to noise can be reduced, and
the computation efficiency may decrease.40 Meanwhile,
as can be seen from Figure 3(b), a larger e will result in
larger error bar of SSDE curves. However, the fewer
the symbols, the less fault information extracted by
SSDE. Therefore, e is recommended to set to 15–30,
and we chose e = 20 in the study.

The parameter l represents the number of intervals.
We set l at eight different values chosen from 10 to 80
with equal steps. Figure 3(c) shows the dependence of
SSDE on parameter l. As can be seen from Figure 3(c),

Figure 2. The illustration of symbol-scale diversity entropy with a = 3.

Algorithm 1 Symbol-scale diversity entropy.

Input: Time series X, embedding dimension m, number of bins l, number of symbols e, scale factor t
Output: SSDE value
1 For a = 1, 2, . . . , t do
2 Conduct time-delay analysis and obtain a new series according to Equation (1).
3 Encode the a sequences into the symbol time series of e symbols.

4 Compute diversity entropy of each symbol-scale sequence Sb
a using Equation (4) and (5).

5 Compute the a�th Ha
SSDE value according to Equation (6).

6 Augment the data H1:a
SSDE = H1:a�1

SSDE ; Ha
SSDE

	 

.

7 End for
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SSDE curves are all in accordance with the complexity
arrangement of different p values for MIX (p) process
so that SSDE is much free to select parameters due to
its strong relative consistency. In this study, interval
number l is set to 30 according to Wang et al.21 As for
the scale factor t, it represents the dimension of entropy
features. A smaller scale number will fail to capture the
relevant fault features adequately, leading to ineffective
fault diagnosis. On the other hand, a large scale number
can result in dimensionality issues and hinder the extrac-
tion of discriminative fault information, leading to

subpar recognition results. Furthermore, a larger scale
number can also increase the computation time required
for feature extraction, making the process less efficient.
Therefore, here, it is recommended to set t = 15 to 30,
and it has been set as 20 in this paper according to
Wang et al.21

In addition, to evaluate the sensitivity of SSDE to
data length, we assessed SSDE in the five MIX (p) pro-
cess as a function of data length N, where the data
length was set at 10 different values from 32 to 16,384.
We chose e = 20, l = 30, m = 4 in all calculations of

Figure 3. SSDE values of five series are shown as functions of (a) embedding dimension m, (b) number of symbols e, (c) number of
intervals l and (d) data length N. (Error bar indicates the standard deviation of 100 independent realizations.)
SSDE: symbol-scale diversity entropy.
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SSDE, and the results are illustrated in Figure 3(d). It
can be seen from Figure 3(d) that the error bar of
SSDE curves decreases with the increase of N.
However, when N falls below a certain value, such as
N equals 32 and 64, it is difficult to characterize the
complexity of the five signals correctly. Here, we rec-
ommend setting N.128 and it is set as 2048 in this
paper.

Strategy for the SSDE-based fault diagnosis model

In this section, a new diagnostic approach for rotating
machinery is proposed by combining SSDE and
SVM.41 The main steps of the SSDE–SVM approach
are as follows. Also, the corresponding flowchart is
shown in Figure 4.

Step 1: Acquisition of vibration signals of rotating
machinery under different health conditions.
Step 2: Construction of feature vectors for different
state samples by the SSDE method.
Step 3: Division of the training and testing sets for the
obtained SSDE-based features.
Step 4: SVM model training and classification model
construction.
Step 5: Identification of various fault patterns using
the trained SVM model.

It is noted that after feature extraction using SSDE,
there would be t entropy features as the feature vector
for the SVM classifier. In this paper, LIBSVM package
(LIBSVM is an open source machine learning library,
developed at the National Taiwan University, Taipei,
Taiwan) is utilized to implement SVM.41 Gaussian
kernel is adopted, the tradeoff parameter C is set to 1,
and the kernel parameter g is set to 0.5 throughout this
work. In this paper, to verify the feature performance
of the proposed method, existing entropy methods,
including MPE, MFE, and MDE are also utilized to
extract the weak fault characteristics. For comparison,
we set t = 20 in all multiscale-based entropy methods
for MDE, MFE, and MPE; m = 2, r = 0:15 in MFE;
m = 5 in MPE; m = 4, l = 30 in MDE according to
Yan et al.15 and Wang et al.42 In summary, the para-
meters setting of the four entropy-based methods are
shown in Table 1.

Verification using simulated signals

Simulation not only helps to evaluate fault conditions
that are difficult to realize in real scenarios, but it also
makes it simple to simulate different levels of failure.
In addition, because the simulation does not cause false
validation caused by the actual assembly and other
environmental noise, it is an effective research method

Figure 4. The scheme of proposed model for fault diagnosis.
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with generality. Therefore, in this section, two simu-
lated case studies are conducted to assess the feature
extraction capability of the SSDE method, including
simulation of different crack severity levels in gearbox
and simulation of different fault types for bearing.

Simulated gearbox signals

Signal generation with simulated gearbox. To evaluate the
performance of SSDE in fault feature extraction, sig-
nals corresponding to gear fault are simulated. This
paper simulates the fixed-shaft gear system where the
root circle is smaller than the base circle. First, the
potential energy approach is utilized to solve the mesh
stiffness of the fixed-shaft gear system.43 Here, a canti-
lever beam model is utilized to simulate the external
gear tooth, as shown in Figure 5(a). For details on the
model and the calculation of mesh stiffness, readers can
refer to the study of Liang et al.43 It is worth noting
that we consider the nonlinearity of the tooth contact
stiffness and then utilize time-varying mesh stiffness as

an input into the gear dynamic model. Second, a one-
stage gear dynamic model is utilized to simulate the
vibration response of three kinds of local tooth faults,
as illustrated in Figure 5(b). Here, the dynamic gear
system model considers the time-varying mesh stiffness
and lateral and torsional vibrations.44,45

According to the motion equations finally estab-
lished in Appendix 1 of this article, the response of the
gear can be solved. Table 2 provides the parameter val-
ues used for simulating the gearbox. In this study, four
health conditions are considered in this paper including
perfect condition and three types of crack severity lev-
els (slight crack, moderate crack and severe crack). The
time wave of the simulated gearbox signals is plotted in
Figure 6(a), (c), (e), and (g), respectively. Furthermore,
the corresponding spectrums are illustrated in Figure
6(b), (d), (f), and (h), respectively.

Analysis results and discussion. In this work, the simulated
signals are added with noise to simulate the real work-
ing condition with different SNR levels. Here, the SNR

Table 1. Parameter setting of entropy-based methods.

Method Scale factor t Embedding dimension m Tolerance threshold r Number of intervals l Number of symbols e

MFE 20 2 0.15 — —
MPE 20 5 — — —
MDE 20 4 — 30 —
SSDE 20 4 — 30 20

MDE: multiscale diversity entropy; MFE: multiscale fuzzy entropy; MPE: multiscale permutation entropy; SSDE: symbol-scale diversity entropy.

Figure 5. (a) Beam model of an external gear tooth and (b) dynamic model of one-stage gearbox.43
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value ranges from 5 to 20 dB, and the stride is 5 dB.
The definition of SNR can be expressed as follows:

SNRdB = 10 log10

Psignal

Pnoise

� �
ð8Þ

where Psignal and Pnoise represent the power of signal
and noise, respectively.

The time waves of the simulated perfect condition
and faults under different SNR levels are illustrated in
Figure 7, respectively.

After acquiring the simulated signals, a total of 400
samples can be obtained, with one hundred samples for
each health condition using non-overlapped cutting.
Out of these samples, 50% are utilized for training, and
the remaining samples are used for performance test-
ing. Four entropy-based methods, namely MFE, MPE,
MDE, and SSDE, are applied to extract fault features
from the signals.

Figure 8 illustrates the fault diagnosis accuracies of
these four methods under different SNR levels for the

Table 2. Physical parameters of a spur gearbox.

Parameter Pinion (driving) Gear (driven)

Number of teeth N1 = 19 N2 = 31
Module (mm) m = 3.2 m = 3.2
Pressure angle a = 20� a = 20�
Mass (kg) m1 = 0.7 m2 = 1.822
Mass moment (kg m2) I1 = 4.25 3 1024 I2 = 2.72 3 1023

Base circle radius (mm) Rb1 = 28.3 Rb2 = 46.2
Root circle radius (mm) Rr1 = 26.2 Rr2 = 45.2
Face width (m) L = 0.0381 L = 0.0381
Young’s modulus (GPa) E = 206.8 E = 206.8
Poisson’s ratio n = 0.3 n = 0.3
Bearing stiffness (N/m) k1 = k2 = 5.0 3 108

Bearing damping (kg/s) c1 = c2 = 4.0 3 105

Torsional stiffness (Nm/rad) kp = kg = 4.0 3 107

Torsional damping (Nms/rad) cp = cg = 3.0 3 104

Rotational frequency (Hz) fs = 30

Figure 6. Time-domain waveform and spectrum of the simulated gearbox signals: (a) waveform of perfect condition, (b) spectrum
of perfect condition, (c) waveform of slight crack, (d) spectrum of slight crack, (e) waveform of moderate crack, (f) spectrum of
moderate crack, (g) waveform of severe crack, and (h) spectrum of severe crack. (fm is gear mesh frequency).
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simulated gear system. It can be observed that as the
noise level increases, the diagnostic accuracies of all
four methods show a decreasing trend. Importantly,
our proposed SSDE method consistently achieves the
highest accuracy among the four methods, demonstrat-
ing superior diagnostic performance. For instance, at
an SNR of 20 dB, both SSDE and MFE methods
achieve accuracies exceeding 90%. Even at a lower
SNR of 10 dB with stronger noise, the accuracies of
MPE, MDE, and MFE drop below 80%, while the
proposed SSDE method maintains an accuracy of
88%. Furthermore, the accuracy of SSDE remains
above 80% even in a strong-noise environment with an
SNR of 5 dB. These comparison results clearly indicate
that the SSDE method exhibits superior feature extrac-
tion ability compared to the MFE, MPE, and MDE
methods, consistently achieving higher diagnostic accu-
racy in various SNR scenarios.

Simulated bearing signals

Signal generation with simulated bearing. The second simu-
lated case is a rolling bearing, and the specific bearing
model number is N205. The simulated rotational speed
is set to 3000 rpm, and the detailed bearing-related
parameter settings are listed in Table 3.

The diagrammatic sketches of bearing models are
illustrated in Figure 9. For simplicity, it is assumed in
the model that the sensor is at the maximum load den-
sity,46 as shown in Figure 9. For the outer ring failure
in Figure 9(a), since the relative positional relationship
between the sensor and the defect does not change with
time, the impulsive force is an ideal force, which does
not consider the changes of the contact position. For
the inner ring failure shown in Figure 9(b), the contact
position of the rolling element in contact with the local
defect changes as the local defect rotates with the inner
ring. For the roller failure shown in Figure 9(c), when
the rolling element rotates with the shaft, the local
defect on the rolling element makes continuous contact
with the outer and inner rings to generate impulses.

Figure 7. The time-domain signals of the simulated gear conditions under different SNR values: (a) time-domain signals of perfect
condition, (b) time-domain signals of slight crack, (c) time-domain signals of moderate crack, and (d) time-domain signals of severe
crack.
SNR: signal-to-noise ratio.

Figure 8. The recognition accuracies under different SNR
values for the simulated gear fault.
SNR: signal-to-noise ratio.

Table 3. Parameter setting of rolling bearing simulation.

Parameter Value

Diameter of pitch circle (mm) 35.5
Diameter of rolling element (mm) 6.5
Rotational speed (rpm) 3000
Number of rolling elements 12
Sampling frequency (Hz) 10,240
Natural frequency of bearing (Hz) 4000
Angle of contact (�) 0
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Similarly, according to the equations established in the
Appendix 2 of this article, the response signals of the
simulated bearing can be obtained. For details on the
bearing model, readers can refer to Wang et al.42 and
McFadden and Smith.46

The time domain signals of the simulated outer ring
failure, inner ring failure, and rolling element failure
are plotted in Figure 10(a), (c), and (e), respectively.
Meanwhile, the corresponding envelope spectrum is
illustrated in Figure 10(b), (d), and (f), respectively.

Analysis results and discussion. In this study, the simulated
fault is added with noise with different SNR values,
where the SNR value ranges from 25 to 20 dB, and
the stride is 5 dB. The time waves of the simulated

three faults with different SNR values are illustrated in
Figure 11, respectively.

For each failure type, a sliding window with 2048
points is used to extract a slice from the original signal
as one sample. Each failure type contains 100 samples.
Thus, there are a total of 300 samples. Next, the dataset
is divided into a training dataset and a testing dataset,
with 50% of the samples allocated for training and the
remaining samples designated for performance testing.
Afterward, fault features are extracted from the data-
sets using four different methods: MFE, MPE, MDE,
and the proposed SSDE. The fault diagnosis accuracies
of four entropy methods under different SNR values is
demonstrated in Figure 12.

It can be observed from Figure 12 that the diagnos-
tic accuracies of the four methods show a decreasing

Figure 10. Time-domain signals and envelope spectrum of the simulated faults: (a) waveform of the rolling element failure,
(b) envelope spectrum of the rolling element failure, (c) waveform of the outer ring failure, (d) envelope spectrum of the outer ring
failure, (e) waveform of the inner ring failure, and (f) envelope spectrum of the inner ring failure.

Figure 9. The schematic diagram of the simulated bearing model under different fault types: (a) outer ring failure, (b) inner ring
failure, and (c) rolling element fault.
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trend as the noise enhancement. In addition, our pro-
posed SSDE method always obtains the highest accu-
racy among the four methods with the best diagnostic
performance. For instance, when SNRø 15 dB with a

low-noise environment, the accuracies of all methods
exceed 95%, and when SNR = 0 dB with stronger
noises, the accuracies of MDE, MFE, and MPE are all
below 80%, while that of the proposed SSDE still
remains at 99%. Also, the accuracy of SSDE still
remains higher than 80% even under strong-noise envi-
ronment with SNR = 25 dB. The comparison results
suggest that the proposed SSDE is more robust to
noise than the three state-of-the-art entropy methods.

In addition, to testify to the necessity of scale analy-
sis, scale factors vary from 1 to 20, and the remaining
parameters of the method are unchanged. Table 4 illus-
trates the diagnostic results. The results of SSDE are
illustrated in Table 4, which compares identification
accuracy trained with different scale factor values
under different levels of noise. It can be observed that
when SNR value is high, all models achieved relatively
high accuracy, even on a small scale factor. For exam-
ple, when SNRø 15 dB, the accuracies with t = 5 are

Figure 12. The recognition accuracies under different SNR
values for the simulated bearing fault.
SNR: signal-to-noise ratio.

Figure 11. The time-domain signals of the simulated faults with different SNR values: (a) time-domain signals of the simulated
rolling element failure, (b) time-domain signals of the simulated outer ring failure, and (c) time-domain signals of the simulated inner
ring failure.
SNR: signal-to-noise ratio.

Table 4. The mean accuracies of SSDE with different scale factors and SNR values.

Scale factor SNR (dB)

25 0 5 10 15 20

1 45.23% 64.13% 71.63% 67.83% 67.87% 57.73%
2 47.43% 64.57% 72.37% 68.33% 71.73% 72.47%
5 48.67% 70.27% 75.97% 83.87% 93.17% 96.77%
10 55.43% 81.07% 98.77% 100% 100% 100%
15 71.07% 98.73% 100% 100% 100% 100%
20 83.47% 99.63% 100% 100% 100% 100%
25 90.17% 100% 100% 100% 100% 100%
30 92.63% 100% 100% 100% 100% 100%

SNR: Signal-to-noise ratio; SSDE: Symbol-scale diversity entropy.
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above 90%. In contrast, a larger scale factor is needed
to achieve higher accuracy when SNR value is low. For
instance, a model with a scale factor of 15 can achieve
100% accuracy when SNR equals 5 dB. However,
when SNR is equal to 25 dB, the model with a scale
factor of 25 can obtain 90% accuracy, which needs a
larger scale factor.

Experimental case studies

The simulation simulates the fault signals in an ideal
environment. Still, there is a large amount of interfer-
ence in the practical working environment. Hence, the
effectiveness of the proposed method needs to be fur-
ther verified in the real environment, which can be
achieved in the experimental case study. Therefore, in
this section, two different experimental case studies,
including planetary gearbox and rolling bearing, are
conducted to evaluate the benefits of SSDE for feature
extraction and fault diagnosis of rotating machinery.

Case study I: fault diagnosis of planetary gearbox

Description of planetary gearbox test and gear fault. The
first experimental case study was carried out on a pla-
netary gearbox system produced by WuXi HouDe
Automation Meter, as shown in Figure 13, which con-
sists of a motor, planetary gearbox, tachometer, and
magnetic brake. In order to acquire vibration signals,

an accelerometer was installed on the top of the bear-
ing casing, and one 5 Nm load was used to simulate
the real application scenario. Here, the sampling fre-
quency was set as 16,384 Hz, and the rotation speed of
the motor was set as 1200 rpm. In summary, Table 5
lists the parameters of the planetary gearbox system.

In the first experimental case, eight health conditions
of planetary gearbox were considered, including nor-
mal condition (NOR), planet gear with a missing tooth
(PGMT), planet gear with a broken tooth (PGBT), pla-
net gear with a spalling tooth (PGST), fracture of bear-
ing cage (FBC), sun gear with a spalling tooth (SGST),
sun gear with a broken tooth (SGBT), sun gear with a
cracked tooth (SGCT), as shown in Figure 14. It is
worth noting that each type of fault signals is sliced
into 100 sub-signals using non-overlapped slicing
method. Each sub-signal contains 2048 sample points,
and there are 800 samples in total for this case study.
The detail description of experimental data and sample

Figure 13. The planetary gearbox system of Case I: (a) the schematic layout of the test rig and (b) the real test rig.

Table 5. The parameters of test planetary gearbox.

Parameter Value

Rotating speed (rpm) 1200
Load (Nm) 5
Sample frequency (Hz) 16,384
Number of teeth for sun gear 21
Number of teeth for planet gear 31
Number of teeth for ring gear 84
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number can be seen from Table 6. Figure 15 illustrates
time-domain vibration signals of planetary gearbox
under different fault categories and health condition.

Compared with state-of-the-art entropy methods. In the first
experimental case, for comparison, feature extraction
is conducted by SSDE, MDE, MFE, and MPE, respec-
tively. Meanwhile, 20 trials are performed to decrease
random effects for each method. The performance
comparison results of four entropy methods are illu-
strated in Figure 16.

Figure 16(a) illustrates the diagnosis recognition
rates for all health conditions under one of the trials.
As can be observed from the radar diagram in Figure
16(a), the curve of SSDE is farthest from the center.
Furthermore, as can be seen from Figure 16(b), the
proposed SSDE obtains an average classification accu-
racy of 98.91% compared to the other methods, with
the highest diagnostic result. The results indicate that
the proposed method achieved the best diagnostic per-
formance and displayed excellent stability compared to
the other entropy methods. As for the calculation time
in Figure 16(b), it also can be observed that SSDE per-
forms best in calculation efficiency. The phenomenon
indicates that SSDE performs best in feature extraction
with the highest diagnostic accuracy and has high cal-
culation efficiency, which can meet the online detection
requirements and provide an attractive way for
entropy-based feature extraction.

Evaluation metric and visualized interpretation. To visually
analyze the feature space, a visual distribution repre-
sentation of all entropy features is illustrated in Figure
17. Here, t-distributed stochastic neighbor embedding
(t-SNE) algorithm47 is applied to map entropy features
onto a two-dimensional feature space. In Figure 17,
the clustering effect represents the strength of the fea-
ture extraction capability: the lower the intra-class dis-
tance among samples for the same class and the larger
the inter-class distance among different classes, the
more powerful the feature extraction capability of the
approach. From Figure 17(a), it can be observed that
SSDE features of the eight types of health conditions
can be clearly separated, and each cluster has a clear
boundary. On the contrary, the feature distributions of
the other three entropy methods after dimensionality
reduction are mixed, where the FBC, SGCT, SGST,
and SGBT conditions cannot be distinguished.

Meanwhile, in this study, the separable criterion
based on distance is applied to compare the useful fault
information for four entropy-based approaches fairly.
The separable criterion, Fisher score J, can be
expressed by Equation (9).48

J =
tr(~Sb)

tr(~St)
ð9Þ

where tr(�) denotes the trace of a matrix, ~Sb indicates
between-class scatter matrix, ~St represents the total
scatter matrix, which can be expressed as49:

Figure 14. Planetary gearbox with artificial defect: (a) PGMT, (b) PGBT, (c) PGST, (d) FBC, (e) SGST, (f) SGBT, and (g) SGCT.
PGMT: planet gear with a missing tooth; PGBT: planet gear with a broken tooth; PGST: planet gear with a spalling tooth; FBC: fracture of bearing

cage; SGST: sun gear with a spalling tooth; SGBT: sun gear with a broken tooth; SGCT: sun gear with a cracked tooth.
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~Sb =
Xc

k = 1

nk ~mk � ~mð Þ ~mk � ~mð ÞT

~St =
Xn

k = 1

zk � ~mð Þ zk � ~mð ÞT
ð10Þ

where ~mk and nk represent the mean vector and size of
the k-th class, respectively, ~m =

Pc
k = 1 nk ~mk is the overall

mean vector. In short, the better the clustering effect,
the smaller the between-class distance, and the greater
J the value.

To ensure fairness, we projected the features from
20-dimension to 2-dimension using t-SNE algorithm
and calculated the value of its Fisher score J. The
results are illustrated in Table 7 and show that the J
value obtained by the SSDE algorithm is higher than
the other three algorithms, indicating that the pro-
posed algorithm is helpful for clustering. As a result,
both clustering performance and Fisher score for the
SSDE method achieve excellent results compared with
other entropy-based methods, further validating the
fault information extraction ability of SSDE.

Table 6. The introduction of experimental data for case study I.

Label Fault location Fault type Fault size (mm) Training sample number Testing sample number

C1 — Normal — 50 50
C2 Planet gear Missing fault — 50 50
C3 Planet gear Broken fault 1 50 50
C4 Planet gear Spalling fault 15*0.75 50 50
C5 Bearing cage Fracture fault 1 50 50
C6 Sun gear Spalling fault 15*0.75 50 50
C7 Sun gear Broken fault 0.2 50 50
C8 Sun gear Crack fault 3 50 50

Figure 15. The time-domain signals of eight health conditions for case study I: (a) NOR, (b) SGST, (c) SGCT, (d) SGBT, (e) PGMT,
(f) PGBT, (g) FBC, and (h) PGST.
NOR: normal condition; PGMT: planet gear with a missing tooth; PGBT: planet gear with a broken tooth; PGST: planet gear with a spalling tooth;

FBC: fracture of bearing cage; SGST: sun gear with a spalling tooth; SGBT: sun gear with a broken tooth; SGCT: sun gear with a cracked tooth.
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Case study II: fault diagnosis of rolling bearing

Description of rolling bearings test and bearing fault. The sec-
ond experimental case was conducted on the test rig
manufactured by WuXi HouDe Automation Meter, as
illustrated in Figure 18, which mainly includes a motor,
tachometer, rolling bearing, and magnetic brake. The
load was simulated to be generated by magnetic damp-
ing by the magnetic damping and the load was set as
5 Nm. A vertical accelerometer mounted on the bear-
ing case was used to collect the vibration signals, and
the sampling frequency was set as 10,240 Hz. Here, the
motor speed was set to 3000 rpm. The test object is a
cylindrical roller bearing and the specific model num-
ber is N205.

In this experiment case, different bearing failure
types were implemented by replacing the test bearings,
and eventually, eight health conditions, in total, were
designed. The fault bearings are shown in Figure 19,
including roller fault (RF), spalling of inner race (SIR),
pitting of inner race (PIR), crack of inner race (CIR),
pitting of outer race (POR), spalling of outer
race(SOR), and crack of outer race (COR). In addi-
tion, each type of fault signal is sliced into 100 sub-
signals using non-overlapped slicing, and each sub-

signal contains 2048 sample points. The time domain
signals and the corresponding frequency spectrum of
the collected vibration signals are illustrated in Figure
20. In addition, the experimental data setup of Case
Study II is described in Table 8.

Compared with state-of-the-art entropy methods. Like Case
study I, four entropy methods are conducted for com-
parisons, and 20 trials are performed on each method
to decrease random effects. Figure 21 illustrates the
comparison results and computation time. Similarly,
according to the radar chart in Figure 21(a), it can be
observed that the light blue curve of the SSDE
approach is farthest from the center, and the SSDE
method obtains the highest diagnosis result of 100%
for all health conditions. In addition, from Figure
21(b), it can be observed that the SSDE approach not
only performs best with the highest diagnosis result of
100%, but also takes the shortest time cost. Here, the
calculation efficiency of SSDE is almost 30 times faster
than that of MFE, and twice faster than that of MDE
and MPE. The comparison results of Case study II fur-
ther highlight the merits of the proposed SSDE method
in both fault feature extraction and calculation

Figure 16. The diagnosis results of four entropy-based methods for the planetary gearbox system. (a) Radar chart of recognition
accuracy for each health condition and (b) performance comparison of four entropy algorithms.

Table 7. The Fisher score of two experimental case studies.

Fisher score SSDE MDE MFE MPE

Case study I 0.9960 0.9946 0.9864 0.9949
Case study II 0.9976 0.9085 0.5830 0.5867

MDE: multiscale diversity entropy; MFE: multiscale fuzzy entropy; MPE: multiscale permutation entropy; SSDE: symbol-scale diversity entropy.
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Figure 17. Feature visualization via t-SNE for four entropy methods: (a) SSDE, (b) MDE, (c) MPE, and (d) MFE.
MDE: multiscale diversity entropy; MFE: multiscale fuzzy entropy; MPE: multiscale permutation entropy; SSDE: symbol-scale diversity entropy;

SNE: stochastic neighbor embedding.

Figure 18. The test rig of rolling bearing system.

1440 Structural Health Monitoring 23(3)



Figure 19. Bearings with different fault types: (a) roller fault, (b) spalling of inner race, (c) pitting of inner race, (d) crack of inner
race, (e) pitting of outer race, (f) spalling of outer race, and (g) crack of outer race.

Figure 20. The time-domain signals of eight health conditions for case study II: (a) Normal condition, (b) roller fault,
(c) spalling of inner race, (d) spalling of outer race, (e) pitting of inner race, (f) pitting of outer race, (g) crack of inner race, and
(h) crack of outer race.
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efficiency, which reduces the computation time of fea-
ture extraction and extracts more reliable information
for fault diagnosis.

Robustness against noisy conditions. We also discuss the
diagnosis accuracy of four entropy methods under a
noisy environment using experimental data. The addi-
tional noise was added to the raw signals to compose
signals with different SNR values, which can be
expressed as Equation (18). Four entropy methods
under different SNR values are studied, ranging from
30 to 25 dB, and the stride is 5 dB. Here, the remain-
ing setting is unchanged, and Table 9 and Figure 22
illustrate the diagnosis results.

It can be found that all four algorithms achieve
pretty high diagnostic accuracy with high SNR values.
For example, when SNRø 15dB, the diagnosis accura-
cies of four entropy methods are above 90%. Whereas,
as the SNR of test samples decreases, so does the diag-
nosis accuracy of algorithms. For example, when SNR

is equal to 0 dB, the diagnosis accuracy of MFE and
MPE suffers from a remarkable decrease, where the
accuracy of MFE decreases to 54.74%, and the accu-
racy of MPE decreases to 30.21%. In contrast, in the
case of low SNR value, SSDE could still perform well
and obtain relatively high diagnostic accuracy. For
instance, when the SNR of test samples is equal to
0 dB, the accuracy of SSDE is higher than 99%, which
is much higher than 54.74% and 30.21%, the diagnosis
accuracy of MFE and MPE, respectively. In addition,
the proposed SSDE still achieves a higher diagnostic
accuracy than 90%, even with an SNR of 25 dB.
However, the diagnosis accuracy of MFE and MPE is
below 30%, and the accuracy of MDE is below 50%.
The above diagnosis results show that SSDE is more
robust to noise than state-of-the-art entropy methods.

Furthermore, to ensure a fair comparison, we have
provided more detailed discussion in the paper regard-
ing the impact of parameter settings on the comparison
results. This information allows readers to better
understand the parameter choices used in both the

Figure 21. The diagnosis results of four entropy-based methods for bearing system. (a) Radar chart of recognition accuracy for
each health condition and (b) performance comparison of four entropy algorithms.

Table 8. The introduction of experimental data for case study II.

Label Fault location Fault type Fault size (mm) Training sample number Testing sample number

C1 — Normal — 50 50
C2 roller Pitting 1 50 50
C3 Inner race Spalling 1 50 50
C4 Outer race Spalling 1 50 50
C5 Inner race Pitting 1 50 50
C6 Outer race Pitting 1 50 50
C7 Inner race Crack 0.2 50 50
C8 Outer race Crack 0.2 50 50
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proposed approach and the established entropy
methods, enabling them to replicate the results and
make a fair assessment of the comparison. The entropy
features obtained with different parameter selections
are input into the SVM classifier, following the same
procedure as in previous case studies. The dimensionality
of the input features for SVM classifier is fixed at 20,
and the classification results are presented in Figure 23.

The results in Figure 23 clearly demonstrate the sig-
nificant influence of parameter settings on the perfor-
mance of the MPE and MFE methods. While MFE
achieves a recognition rate of 90% when appropriate
parameters are chosen, the recognition rate for MPE
remains consistently below 90%. In contrast, the MDE
method exhibits a high recognition rate of 98% when
suitable parameters are selected, with the majority of
recognition rates falling within the range of 90%–94%.
Remarkably, the proposed SSDE method consistently
outperforms the other entropy methods, surpassing a
recognition rate of 98% across various parameter
selections.

These findings emphasize the critical role of para-
meter selection in established entropy methods and
highlight the superior performance of the proposed
SSDE method. By providing a comprehensive analysis

of the impact of parameter settings and showcasing the
consistently high recognition rate achieved by the
SSDE method, our study bolsters the effectiveness and
reliability of the proposed approach for fault diagnosis.

Evaluation metric and visualized interpretation. In addition,
the t-SNE algorithm is applied to obtain two-
dimensional visualization of entropy feature distribu-
tion with SNR = 0 dB as illustrated in Figure 24. It
can be found from Figure 24(a) that each cluster of
eight health conditions is clearly separated, and SSDE
features are clustered well. On the contrary, a large
number of features of the other three entropy methods
are mixed. Like Case study I, the separable criterion is
introduced to compare the useful feature information,
and the results are illustrated in Table 7. Results verify
that more useful fault information can be extracted by
the SSDE method incorporating time-delay analysis
and SDF process, thus generating higher diagnostic
accuracy.

Integration with other entropy methods. In the subsection,
apart from diversity entropy, we also integrate symbol-
scale analysis with dispersion entropy and FE to fur-
ther demonstrate the superiority of the proposed
symbol-scale analysis method. The experiment of roll-
ing bearing under 5 dB SNR are carried out to investi-
gate the diagnosis performance of symbol-scale
dispersion entropy, symbol-scale FE. Also, the original
multiscale dispersion entropy, MFE are both used for
comparison. The obtained classification results are
listed in Figure 25.

It can be found that in this case study, symbol-scale
dispersion entropy and symbol-scale FE also improved
the recognition accuracy and achieved desired diagnos-
tic performance improvement compared with the mul-
tiscale entropy approach. It can be indicated that the

Table 9. The classification results with different SNR values for case study II.

SNR (dB) SSDE MDE MFE MPE

Acc (%) SD (%) Acc (%) SD (%) Acc (%) SD (%) Acc (%) SD (%)

30 100 0 99.62 0.17 98.75 0.43 91.63 1.05
25 100 0 99.51 0.38 98.58 0.52 91.9 1.26
20 100 0 98.54 0.51 98.33 0.52 92.81 1.72
15 100 0 97.36 0.9 98.04 0.54 91.82 1.23
10 100 0 93.14 1.01 95.84 0.83 83.11 1.55
5 100 0 85.76 1.81 84.91 1.23 57.8 2.59
0 99.35 0.28 67.41 1.87 54.74 1.41 30.21 1.85
25 90.15 1.06 45.19 3.88 25.28 1.54 15.65 2.38

Acc: accuracy; MDE: multiscale diversity entropy; MFE: multiscale fuzzy entropy; MPE: multiscale permutation entropy; SSDE: symbol-scale diversity

entropy; SNR: signal-to-noise ratio; SD: standard deviation.

Figure 22. The recognition accuracies with different SNR
values for four entropy methods.
SNR: signal-to-noise ratio.
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combination of the proposed symbol-scale and other
entropy methods is also useful. The proposed symbol-
scale method can successfully overcome the shortcom-
ings of traditional multiscale analysis methods and sig-
nificantly improve the accuracy of feature extraction
and the robustness to noise.

Conclusion

In this work, SSDE is proposed to solve two main
problems of coarse-graining-based multiscale approach.
On the one hand, SSDE utilizes the time-delay process
of different intervals to capture the fault characteristics
from the time series over multiple time scales. On the
other hand, SSDE combines the merits of SDF in noise
reduction and calculation efficiency to overcome the
limitation of weak fault extraction under a low-SNR
environment. Simulations and experimental case studies

are applied to validate the superiority of SSDE method
by comparing it with original multiscale entropy meth-
ods, including MDE, MFE, and MPE. Results demon-
strate that the proposed SSDE can effectively recognize
various bearing and gearbox fault types with the high-
est recognition of 98.91% and 100%, respectively.
Moreover, the calculational efficiency of the proposed
SSDE is the highest, which is nearly 30 times faster
than that of MFE and twice faster than that of MDE,
respectively.

In this paper, the concept of symbol-scale analysis is
proposed and combined with diversity entropy, which
can enhance the fault detection ability and improve the
calculation efficiency. In our future work, the incor-
poration of symbol-scale analysis and other entropy
methods will be discussed in more detail. Moreover,
the symbol-scale entropy methods will be studied in
other fields, such as acoustical signals.

Figure 23. Classification accuracies when selecting different parameters for four entropy methods under 5 dB case: (a) SSDE,
(b) MDE, (c) MPE, and (d) MFE.
MDE: multiscale diversity entropy; MFE: multiscale fuzzy entropy; MPE: multiscale permutation entropy; SSDE: symbol-scale diversity entropy.
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Figure 24. Feature visualization via t-SNE for four entropy methods under 22 dB case: (a) SSDE, (b) MDE, (c) MFE, and (d) MPE.
MDE: multiscale diversity entropy; MFE: multiscale fuzzy entropy; MPE: multiscale permutation entropy; SSDE: symbol-scale diversity entropy; SNE:

stochastic neighbor embedding.

Figure 25. The versatility of incorporation of proposed symbol-scale approach and other entropy methods.
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Appendix 1

For the gear simulation, the motion equations in the x-
direction can be expressed as:

m1€x1 = � kx1x1 � cx1 _x1 ðA1Þ

m2€x2 = � kx2x2 � cx2 _x2 ðA2Þ

The motion equations in the y-direction can be
expressed as:

m1€y1 = � k1y1 � cy _y1 + kt(Rb1u1 � Rb2u2 + y1 � y2)

+ ct(Rb1
_u1 � Rb2

_u2 + _y1 � _y2)

ðA3Þ

m2€y2 = � k2y2 � c2 _y2 + kt(Rb1u1 � Rb2u2 + y1 � y2)

+ ct(Rb1
_u1 � Rb2

_u2 + _y1 � _y2)

ðA4Þ

The motion equations of the rotation can be
expressed as:

Im
€um = M1 � kp(um � u1)� cp( _um � _u1) ðA5Þ

Ib
€ub = kg(u2 � ub) + cg( _u2 � _ub)�M2 ðA6Þ

For the rotary motion of the pinion and gear, the
motion equations can be expressed as:

I1
€u1 = kp(um � u1) + cp( _um � _u1)� Rb1½kt(Rb1u1

� Rb2u2 + y1 � y2) + ct(Rb1
_u1 � Rb2

_u2 + _y1 � _y2)�
ðA7Þ

I2
€u2 = � kg(u2 � ub)� cg( _u2 � _ub) + Rb2

½kt(Rb1u1 � Rb2u2 + y1 � y2)

+ ct(Rb1
_u1 � Rb2

_u2 + _y1 � _y2)�
ðA8Þ

where:
kt-mesh stiffness;
ct-mesh damping coefficient;
m1/m2-mass of the pinion/the gear;
kx1/kx2-horizontal radial stiffness of the input bear-

ings/the output bearings;
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cx1/cx2-horizontal radial viscous damping coefficient
of input bearings/output bearings;

k1/k2-vertical radial stiffness of the input bearings/
the output bearings;

c1/c2-vertical radial damping coefficient of the input
bearings/the output bearings;

y1/y2-vertical radial damping coefficient of the input
bearings/the output bearings;

Rb1/Rb2-base circle radius of pinion/gear;
M1/M2-input motor torque/output torque from

load;
kp/kg-torsional stiffness of the input flexible cou-

pling/the output flexible coupling;
cp/cg-damping coefficient of the input flexible cou-

pling/the output flexible coupling;
um/u1/u2/ub-angular displacement of motor/ the

pinion/ the gear/the load;
Im/I1/I2/Ib-mass moment of inertia of the motor/the

pinion/ the gear/the load.

Appendix 2

The simulated outer ring failure signal can be indicated
as:

vo(t) =
X+ ‘

k =�‘

dod(t � kTo)

" #
� e(t) ðA9Þ

where do is influence coefficient of outer race by
defects. To is the reciprocal of outer race fault fre-
quency. e(t) represents damping function, d(t) repre-
sents impulse function, and k represents impulse
number. The damp function can be expressed as:

e(t) =
exp (2t=T ), t.0

0 t<0

�
ðA10Þ

The simulated inner ring failure signal can be indi-
cated as:

X+ ‘

t =�‘

(did(t � kTi)

 !
� q(2pfrt) � p(2pfrt)

( )
� e(t)

ðA11Þ

where di is influence coefficient of inner race by defects.
Ti is the reciprocal values of fault characteristic
frequency of inner race. p(u) = cos u represents the

influence coefficient of localized defect. q(u) = qmax

1� 1=2s(1� cosu)½ �n represents radial load distribu-
tion, where s means the coefficient of load distribu-
tion. In this paper s = 0:5, n = 1:1 for cylindrical roller
bearing. In addition, fr is the rotating frequency.

The simulated rolling element failure signal can be
indicated as Equation (12).

( X+ ‘

t =�‘

dbod(t � kTb) + dbid t � kTb �
1

2
Tb

� �� � !

�q(2pfrt) � p(2pfrt)

)
� e(t)

ðA12Þ

where dbo, dbi are influence coefficients of rolling ele-
ments when hitting the outer ring, and rolling element
when hitting the inner ring, respectively. Tb is the reci-
procal value of fault characteristic frequency of rolling
elements.

Notation

RF Roller fault
CIR Crack of inner race
COR Crack of outer race
DE Diversity entropy
FBC Fracture of bearing cage
FE Fuzzy entropy
MDE Multiscale diversity entropy
MFE Multiscale fuzzy entropy
MPE Multiscale permutation entropy
PGMT Planet gear with a missing tooth
PGST Planet gear with a spalling tooth
PGBT Planet gear with a broken tooth
PE Permutation entropy
PIR Pitting of inner race
POR Pitting of outer race
SDF Symbolic dynamic filtering
SGBT Sun gear with a broken tooth
SGST Sun gear with a spalling tooth
SGCT Sun gear with a cracked tooth
SIR Spalling of inner race
SNR Signal-to-noise ratio
SOR Spalling of outer race
SSDE Symbol-scale diversity entropy
SVM Support vector machine
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